
AIAA 2001-2609 

 
 

American Institute of Aeronautics and Astronautics 

1 

EIGENVALUES AND EIGENVECTORS OF THE EULER 
EQUATIONS IN GENERAL GEOMETRIES 

 
AXEL ROHDE* 

Florida Institute of Technology 
Melbourne, Florida 32901 

 
 

                                                           
* Ph.D. Graduate, Aerospace Engineering Program, Mechanical and Aerospace Engineering Department. Student Member AIAA. 
Copyright © 1999-2001 Axel Rohde. Published by the American Institute of Aeronautics and Astronautics Inc. with permission. 

ABSTRACT 
 

The complete eigensystem, including eigenvalues and 
left and right eigenvectors, of the Euler equations of 
inviscid flow are derived in a general finite volume 
coordinate frame. The symmetry of the eigenvector 
space is demonstrated from a mathematical and 
geometric viewpoint. Results are presented for 2-D and 
3-D inviscid flow, and their application in compu-
tational fluid dynamics (CFD) is discussed. 

 
 

INTRODUCTION 
 

The eigensystem—eigenvalues and eigenvectors—of 
the Euler equations of inviscid flow form the basis of 
total variation diminishing (TVD) algorithms in 
computational fluid dynamics (CFD).1-5 Whether the 
conservation equations are solved in a finite difference 
or finite volume format, the matrices of right and left 
eigenvectors that can be found in the literature are 
generally decomposed along the directions of a global 
( , , )x y z  or local ( , , )ξ η ζ  coordinate system.6-9 Such 
matrix decomposition, however, is not necessary. The 
eigenvalues and eigenvector matrix of 3-D inviscid 
flow can be expressed along any given direction, e.g. 
through a unit vector ( , , )n n nx y z  normal to a surface. 
The resulting expression is relatively simple and allows 
for more efficient code implementation in finite volume 
TVD flow solvers. 
 
 

GOVERNING EQUATIONS 
 

The 3-D unsteady Euler equations of inviscid flow, a 
system of integral conservation equations for mass, 
momentum, and energy, can be written in vector 
notation as the sum of a volume and surface integral, 

 

 0
CV CS

Q dV F dA
t

∂
∂

+ =∫ ∫  (1) 

 
where, 

 

  ,        

n

n x

n y

n z

o o n

v
u u v p n

Q Fv v v p n
w w v p n
e h v

ρ ρ
ρ ρ
ρ ρ
ρ ρ
ρ ρ

   
   +   
   = = +
   +   
      

 (2) 

 
The velocity across a cell boundary is simply defined as 
the dot product of local velocity vector and outward 
unit normal vector to the boundary, 

 
 ˆn x y zv v n u n v n w n= ⋅ = + +  

(3) 
2 2 2 1x y zn n n+ + =  

 
The stagnation energy and enthalpy per unit mass are 
the sum of static and dynamic parts, respectively, 
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with ek  being the kinetic energy per unit mass. Static 
energy, enthalpy, and pressure can all be expressed in 
terms of the local speed of sound a , a function of 
temperature, and the ratio of specific heats γ , 
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where, 

2  ,      p va R T c cγ γ= =  



AIAA 2001-2609 

 
 

American Institute of Aeronautics and Astronautics 

2 

TRANSFORMATION MATRIX 
 

The first step in determining the eigensystem of the 
above conservation equations is to derive the 
corresponding Jacobian or transformation matrix, which 
can be found by taking partial derivatives of the flux 

vector components Fi  with respect to the flow vector 
components Qj  after expressing the flux vector solely 
in terms of the flow vector. Only the resulting 
transformation matrix shall be presented here, 
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We can now rewrite the Euler equations in the format 
of a general wave equation, 

 

 ( ) 0
CV CS

Q dV F Q dA
t

∂
∂

+ =∫ ∫  (7) 

 
where, 

[ ]( )F Q A Q=  
 

The transformation matrix [A] can be interpreted as a 
wave speed with local and directional dependence for a 
nonlinear multi-dimensional wave. The multi-
dimensional character is really twofold: (1) we are 
working in a 3-D flow field, where waves can travel in 
any direction; (2) there are different types of waves, all 
traveling at their own characteristic speeds, which are 
determined by the eigenvalues of the matrix [A]. 

 
 
 

EIGENVALUES AND RIGHT EIGENVECTORS 
 

The eigenvalues of the transformation matrix [A] are 
the roots λi of the characteristic equation, 

 
 ( )det [ ] [ ] 0A Iλ− =  (8) 

 
where [I] is the identity matrix. It turns out that three 
eigenvalues are distinct and two are repeated, 

 
 { , , , , }i n n n n nv a v v a v vλ = − +  (9) 

 
Each right eigenvector Ri , corresponding to eigenvalue 
λi , must satisfy the following matrix equation, 

 
 [ ] i i iA R Rλ=  (10) 

 
Being column vectors, the right eigenvectors can be 
collectively written in matrix form, such that, 
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It should be noted at this point that the eigenvectors of 
repeated eigenvalues are not distinct! They span a 
subspace and any vector within this subspace is also an 
eigenvector of the same repeated eigenvalue. In the 
general space 5 above—for which R1  through R5  

form a basis—the eigenvectors R4  and R5 , which 
belong to the repeated eigenvalues 4 5 nvλ λ= = , span a 
two dimensional subspace. Any linear combination of 
R4  and R5  is itself a member of that subspace and thus 
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an eigenvector. For example, a sixth eigenvector, which 
would satisfy the equation [ ] 6 2 6A R Rλ= , could be 
formed as follows, 

 

6 4 5

0
0

yz
z

x x
y

z y

nn nR R R
n n n

v n w n

 
 
 −   −  = + =   
     − 
 − 

 (12) 

The following sets of right eigenvectors, again written 
in matrix format, are equally valid with (R-1), 
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LEFT EIGENVECTORS 
 

The set of left eigenvectors can be determined from the 
inverse of the right eigenvector matrix, 

 
 1[ ] [ ]L R −=  (15) 

 
For the first set of right eigenvectors (R-1), the 
matching set of left eigenvectors written in matrix 
format is, 
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Being row vectors, the left eigenvectors are denoted by 
a left pointing half arrow. Each left eigenvector and 

corresponding eigenvalue satisfy the following matrix 
equation, and thus bear the name “left” eigenvector, 
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 [ ]i i iL A Lλ=  (17) 
 

The above left eigenvector matrix becomes singular for 
nx = 0 , and simply multiplying the last two rows by nx  
does not alleviate the problem; the matrix remains 
singular along certain directions, and a zero row vector 

emerges. It turns out that the inverse matrix of the 
second and third set of right eigenvectors, (R-2) and (R-
3), yield a similar result, carrying the singularity in the 
ny  and nz  component, respectively, 
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Depending on the direction of the unit normal vector, a 
singularity in the left eigenvectors can thus be avoided 
by choosing the appropriate matrix. To minimize 
numerical error during the computation, the largest 
component of the normal vector—measured by its 
absolute value—should always be located in the 
denominator. 
 
 

EIGENSYSTEM FOR 2-D FLOW 
 

The transformation matrix and complete eigensystem 
for 2-dimensional flow can easily be derived from the 
more general 3-dimensional result by eliminating 
appropriate rows and columns within the matrices and 
simplifying the remainder by setting w nz= = 0 . For 
example, the transformation matrix [A] for 2-D flow is 
obtained after eliminating the fourth row and fourth 
column, and by redefining some of the quantities 
involved, 

 

ˆn x yv v n u n v n= ⋅ = +  
(20) 

2 2 1x yn n+ =  
 

 ( )2 21
2ke u v= +  (21) 

 
The set of eigenvalues reduces to the first four, only 
one being repeated, 

 
 { , , , }i n n n nv a v v a vλ = − +  (22) 

 
Choosing the first set of eigenvectors, both left and 
right, the matrix of right eigenvectors for 2-D flow is 
obtained after eliminating the fourth row and fifth 
column from the general result, whereas the left 
eigenvector matrix is found by deleting the fifth row 
and fourth column from its original 5x5 matrix. It is 
interesting to note that after applying the above 2-D 
definitions, the singularities in the last row of the new 
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4x4 left eigenvector matrix disappear! The first and 
third element of the fourth row can be simplified to, 
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DISCUSSION OF RESULTS 
 

It was demonstrated earlier that two of the five right 
eigenvectors form a 2-dimensional subspace, within the 
general 5-dimensional space spanned by all right 
eigenvectors, and that every member of this subspace is 
itself an eigenvector. This phenomenon was attributed 
to the fact that their corresponding eigenvalues are 
repeated, which creates a “symmetry” within the 
eigenvector space. Although it may seem difficult to 
visualize any symmetry within a 5-dimensional vector 
space, part of this symmetry reveals itself when we 
geometrically interpret the 2-dimensional subspace as a 
plane. The eigenvectors R4 , R5 , and R6  shall now 
demonstrate this effect. Upon careful observation, they 
can be recast as shown in Equation (25), where tx , ty  

and tz  are tangent vectors which all lie in the plane 
defined by the unit normal vector n ; their subscripts 
denote the vanishing component along the 
corresponding major axis, which can clearly be seen in 
Figure 1. Although all tangent vectors are depicted with 
equal length, they are not unit vectors and thus carry the 
standard vector symbol rather than the caret. Needless 
to say, the orthogonality relation holds between the 
tangent vectors and the surface unit normal, which is 
restated in Figure 1. 
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It was shown earlier that R6  can be expressed as a 

linear combination of R4  and R5 . Geometrically, this 
implies that for each normal vector only two tangent 
vectors are needed to define the same plane. Any two 
tangent vectors rotated around the unit normal vector n̂  
will result in another set of equally valid tangent 
vectors defining the same planar surface. The unit 
normal vector, being the axis of rotation, can thus be 
seen as the axis of symmetry for the vector space 
defined. 

 
 

n t n t n tx y z⋅ = ⋅ = ⋅ = 0  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Eigenvector Subspace 
 
 

What has been omitted so far is the physical 
interpretation of the eigenvectors themselves. In simple 
terms, which way do the eigenvectors point? It was 
mentioned earlier that the different speeds at which 
waves travel through the flow field are determined by 
their eigenvalues. The direction of wave travel has 
already been specified by the unit vector n̂  normal to 
the surface under consideration—recall that we are 
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trying to determine the magnitude of the mass, 
momentum, and energy flux across a given surface 
element. 
 
The Euler equations contain three types, or families of 
waves, one for every distinct eigenvalue. Each family 
of waves carries a different signal. The waves traveling 
at the speed of the flow ( nv ) are called entropy waves, 
their signal being entropy, whereas waves traveling at 
the speed of sound relative to the flow ( nv a± ) are 
called acoustic waves. Unfortunately, the signal carried 
by acoustic waves is not quantifiable in simple 
thermodynamic terms, but let us just say that they carry 
acoustic information. 
 
In essence, the eigenvectors point along the direction of 
the strongest signal. Any signal, whether physical or 
numerical in nature, is never completely noise free. 
Numerical noise is introduced into the flow field 
through discretization error, as well as the accumulative 
effect of machine round-off error. However, one can 
minimize the noise and thus obtain the strongest 
possible signal through proper tuning. The eigenvectors 
are optimally tuned with respect to the flow and thus 
deliver the best signal-to-noise ratio when it comes to 
computing the fluxes across a surface element. 
 
 

CONCLUSION 
 

The above derivation of the inviscid eigensystem was 
aided by the analysis software Mathematica from 
Wolfram Research, Inc. Although its presentation is by 
no means unique, the format adopted here is very 
compact and allows for efficient code implementation 
within a total variation diminishing (TVD) algorithm as 
part of an inviscid or viscous finite volume flow solver. 
An application of the above result can be found in the 
author’s dissertation, which studies the high-altitude 
compressible viscous flow over a rotating disc.10  
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