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ABSTRACT 
 

In the presented work, a new numerical approach to 
computational aeroacoustic (CAA) problems based 
on a modified total variation diminishing (TVD) 
scheme is examined in order to investigate its value 
as a possible alternative to the more computationally 
expensive schemes currently used in CAA. Such 
schemes generally rely on high-order dispersion-
relation-preserving (DRP) algorithms. The method is 
applied to the direct numerical analysis of an 
unsteady, compressible, viscous 2-D flow over a 
cylinder at a Mach number of 0.5 and a diameter-
based Reynolds number of 100,000. The acoustic 
signal is extracted directly from the unsteady 
flowfield solution at several radii and compared to 
the acoustic predictions based on the Potential-
Theoretical Method. 

 
 

INTRODUCTION 
 

The current study applies a recently developed 
computational aeroacoustics (CAA) code based on a 
modified total-variation-diminishing (TVD)1-10 
scheme, to directly compute the sound produced by a 
2-D circular cylinder in a viscous flow. This problem 
was originally included as a category 4 benchmark at 
the 2nd CAA Workshop11 where it was specified for 
incompressible flow of Mach number 0.2M =  and 
transitional Reynolds number 90,000Re =  based on 
the cylinder’s diameter D . Such flow parameters 
presented a significant challenge to the direct 
numerical simulation of sound at the specified 
distance of / 35r D =  from the cylinder. In fact, none 
of the contributors in Ref. 11 were able to compute 
the flow and the acoustic field simultaneously. 
Instead, most of the participants chose to  use  RANS 
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or LES to compute the wake-induced unsteady forces 
on the cylinder, followed by a separate prediction of 
the Aeolian tones using a surface-integral technique. 
In the present work, a direct numerical prediction of 
the unsteady flow and sound is obtained using a 
numerical algorithm based on the finite-volume 
description of the unsteady, compressible Navier-
Stokes equations. The numerical scheme is formally 
second-order accurate in space and first-order 
accurate in time. The inviscid subset of the equations 
is modeled according to the TVD principle with the 
numerical viscosity parameter set to zero. This 
feature preserves the natural formation of the viscous 
boundary layer and wake flows at Mach numbers 

0.3M > , but at the same time it makes the current 
formulation inadequate for incompressible flow 
predictions. This issue will be addressed in the future. 
The current version of the code has been applied to 
simulate a 2-D flow over a cylinder at a Mach 
number 0.5M =  and a diameter-based Reynolds 
number 100,000Re = . No turbulence modeling is 
implemented for this test case, since the flow is 
below the transitional Reynolds number of 300,000. 
The simulation is carried out in a computational 
domain extending 15 cylinder diameters away from 
the boundary, on a mesh with resolution 180x160. 
The predicted time history of the acoustic signal is 
further extracted from the unsteady flowfield solution 
and compared to the acoustic predictions based on 
the Potential-Theoretical Method12, with the latter 
employing the near-field unsteady pressure results as 
an input. The acoustic directivities are compared at 
several radii to examine the accuracy of the direct 
numerical predictions. 
 
In the following discussion, the governing equations, 
numerical method, and its implementation are first 
discussed, followed by a short overview of the 
acoustic prediction method and comparison of the 
numerical results. 
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GOVERNING EQUATIONS 
 

The unsteady Navier-Stokes equations, representing a 
system of conservation equations for mass, 
momentum, and energy in a viscous flow, can be 
written in vector notation as the sum of a volume and 
surface integral, 
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where, for two-dimensional problems, 
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and, 
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The stagnation energy and enthalpy per unit mass are 
defined as the sum of static and dynamic parts, 
respectively, 
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with ek  being the kinetic energy per unit mass. Static 
energy, enthalpy, and pressure can all be expressed in 
terms of the local speed of sound a , a function of 
temperature, and the ratio of specific heats γ , 
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where, 
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The energy flux ne  across a cell boundary, which is 
due to heat exchange as well the work done by the 
viscous stress tensor, is defined as follows, 
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The force vector f , which appears in the momentum 

equation, is the dot product of the stress tensor σ  
and the outward unit normal to the local cell surface, 
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The components of the viscous stress tensor τ , based 
on a Cartesian frame of reference, are determined 
through local velocity gradients, 

 
2 2
3

2 2
3

xx

xy yx

yy

u v
x y

v u
x y

v u
y x

τ µ

τ µ τ

τ µ

 ∂ ∂= − ∂ ∂ 

 ∂ ∂= + = ∂ ∂ 

 ∂ ∂= − ∂ ∂ 

 

 
Similarly, the components of the heat flux vector q  
are determined through local temperature gradients 
according to Fourier’s law of heat conduction, 
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NUMERICAL METHOD 
 

In the applied numerical formulation, the Navier-
Stokes equations are discretized and solved in time 
using first-order accurate explicit time marching. At 
each time level, the physical fluxes ( F ) are summed 
over all four faces of the 2-D finite volume elements. 
A set of corrective eigenfluxes ( f ), closely tied to 
the eigensystem of the inviscid Euler equations, is 
further added to the discretized equations in order to 
assure stability of the numerical scheme. Note that 
their presence renders the overall discretization total 
variation diminishing (TVD). 
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Denoting the spatial locations with subscript indices 
and time levels with superscript indices, the 
discretized equations become, 
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The eigenfluxes are constructed according to 
Harten’s1 original TVD scheme, with one significant 
modification: instead of using the numerical viscosity 
function of the form, 
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the absolute value function, Abs( )x x= , was used 
in all successive formulas. Such practice is equivalent 
to setting the numerical viscosity parameter 0ε = . 
Thus, we obtain, 
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where R  and L  are the matrices of the right and left 
eigenvectors of the Euler equations in the normal 
vector format, 
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The flux correction terms u  and m  are calculated 
based on the Minmod flux limiter function, 
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where [ ]Minmod ( , ) max 0, min( , )x y x y= . 
 

The eigenvalues λ  are non-dimensionalized by τ , 
the ratio of integration time step and local cell 
spacing, 
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In all calculations, the flowfield is initialized 
impulsively, i.e., all the fluid cells in the interior 
computational domain are assigned the free stream 
values. Afterwards, the far-field boundary cells are 
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maintained at the free stream conditions. A no-slip 
condition is implemented at the solid boundary 
together with a pressure-density gradient 
extrapolation based on the adiabatic wall condition. 

 
 
 

COMPUTATIONAL RESULTS 
 

After the mean flow has traveled approximately 100 
cylinder diameters from its impulsive beginning, the 
alternate vortex shedding initiated, and a von Karman 
vortex street develops in the wake. Figure 1 shows 
two Mach number plots taken 10ms after the 
impulsive start, at which point periodicity of the 
shedding process fully sets in. The upper plot shows 
the propagation of the wake towards the far-field 
boundary. The lower picture, enlarged by a factor of 
ten, reveals a small region of locally supersonic flow 
followed by a transonic shock impinging on the 
cylinder’s surface, with subsequent boundary layer 
separation. The lift, drag, and moment coefficients 
were recorded between 10ms and 20ms of simulation 
time. Figure 2 shows the time history of the 
aerodynamic coefficients that clearly demonstrates 
periodicity of the flow, and also indicates the 
presence of additional high and low frequency 
content, characteristic of this Reynolds number 
regime11. 
 
 

 
 

Figure 1a: View of the computational domain with Mach 
number contours at 10ms 

 
 

Figure 1b: Mach number contours at 10ms (enlarged view) 
 

 
Figure 2: Aerodynamic coefficients versus time 
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ACOUSTIC ANALYSIS OF NUMERICAL DATA 
 

To extract the acoustic signal contained in the 
unsteady numerical solution, the time history of the 
unsteady pressure was recorded at several radii 
corresponding to / 1, 5, 10,r D =  as well as on the 
surface of the cylinder, / 0.5r D = . The data was later 
processed through a Fast Fourier Transform in order 
to examine its frequency content and dominant 
harmonics. Some of the results from this analysis are 
illustrated in Figures 3-8. 
 
In Figure 3, a typical time history of the unsteady 
pressure solution is shown as recorded at the radial 
locations corresponding to / 0.5, 1, 5,r D =  and 10, 
at the same angular position of 90 deg. (above the 
cylinder). Once the mean flow has converged, the 
time history is calculated for a period of 3ms by 
marching through 14,754 steps with a time step of 
approximately 2*10-7 s. This provided for a minimum 
frequency resolution corresponding to a Strouhal 
number / 0.02St f D U= = , where / 2f ω π=  is the 
frequency in Hertz. Figure 4 shows the FFT-
produced frequency spectrum of the unsteady 
pressure signals calculated by the code at the angular 
locations 0, 90, 180θ =  and 270 deg. on the surface 
of the cylinder ( / 0.5r D = ). Note that results for 90 
and 270 deg. (the upper and bottom points) are 
expected to be almost identical due to the upstream 
flow symmetry. As can be seen from the plot, the 
pressure fluctuations on the surface of the cylinder 
appear highest at those two points, with the dominant 
frequency corresponding to 0.23St = , which is very 
close to the expected Aeolian tone frequency. 
 
The results in Figures 5-7 are shown for the same 
angular locations, for the radii / 1, 5,r D =  and 10, 
correspondingly. While the same maximum of the 
spectral energy persists at the locations above and 
below the cylinder, the total unsteady pressure 
response appears dominated by pressure fluctuations 
in the wake region ( 0θ =  deg.) with a broad 
frequency content. Interestingly enough, as the flow 
moves further downstream, the maximum of 
pulsations is recorded at / 5r D = , which points the 
presence of a shed vortex at this location (compared 
to / 1r D = ). Furthermore, downstream at / 1r D = , 
the dominant frequency is close to the acoustic one, 
and the same frequency dominates in the far field 
( / 10r D = ) where the aerodynamic wake pulsations 
have already significantly reduced (this 
correspondence is also seen from the flowfield 
pattern in Figure 1). Note, however, that the 

dominant frequency appears shifted to the left 
relative to 0.23St =  observed elsewhere. 
 
 

 
Figure 3: Recorded time history (3ms) of unsteady pressure 
at 90θ =  deg., 0.5 , , 5 ,  and 10r D D D D=  
 
 

 
 

Figure 4: FFT of unsteady pressure at θ = 0, 90, 180 and 
270 deg., 0.5r D=  (surface of the cylinder) 
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Figure 5: FFT of unsteady pressure at θ = 0, 90, 180 and 
270 deg., r D=  
 

Figure 6: FFT of unsteady pressure at θ = 0, 90, 180 and 
270 deg., 5r D=  
 
 
Finally, Figure 8 presents a more detailed analysis of 
the obtained far-field frequency spectrum at 4 angular 
locations in the upper half of the plane, 
corresponding to θ = 30, 60, 90 and 120 deg. The 
position above the cylinder shows the maximum 
acoustic power at 0.23St = , which corresponds to 
the dipole-type acoustic radiation due to the 
oscillating unsteady forces on the cylinder. This 
feature is clearly observed in Figure 9, showing a 
directivity plot for the unsteady pressure harmonic 
corresponding to 0.23St = . The acoustic directivity 
results will be compared to the acoustic predictions 
based on the Potential-Theoretical Method, which is 
first briefly described. 

 
Figure 7: FFT of unsteady pressure at θ = 0, 90, 180 and 
270 deg., 10r D=  
 

 
Figure 8: FFT of unsteady pressure at θ = 30, 60, 90 and 
120 deg., 10r D=  
 
 

POTENTIAL-THEORETICAL METHOD 
 

The Potential-Theoretical Method recently developed 
in Ref. 12 belongs to a family of Kirchhoff-surface 
techniques relying on the near-field flow data to 
propagate acoustic information to the far-field 
through the linear flow region. The Kirchhoff control 
surface should encompass the flow region containing 
all the acoustic sources. With the assumption that the 
acoustic propagation outside of the control surface is 
governed by a simple wave equation, the acoustic 
solution in the far-field can be obtained in terms of an 
integral over the Kirchhoff surface, involving some 
form of the Green function convoluted with the near-
field acoustic source information on the control 
surface. Different formulations involve various 



AIAA 2003-3239 

 
 

American Institute of Aeronautics and Astronautics 

7

techniques to represent the required Green function 
and select the type of the near-field flow information 
on the control surface. In the classical Kirchhoff 
approach13, the free-space Green function is used 
along with the acoustic source’s unsteady pressure 
and its time and normal derivatives. Other 
approaches14-15 have used the method of images to 
construct a special form of the Green function to 
eliminate the need to estimate source pressure 
derivatives on the control surface. The current 
approach achieves the same task of employing only 
the unsteady pressure information on the control 
surface, but at the same time it requires only a free-
stream Green function, thus making the method 
particularly flexible to any shape of the control 
surface. For instance, the latter can coincide with the 
mesh used in a flow simulation, thus avoiding any 
interpolation errors. 
 
As any Kirchhoff-type approach, the method is 
implemented with the assumption that the acoustic 
frequency harmonics radiating from the control 
surface are governed by the Helmholtz equation, 

 
2 2 0f fP K P∇ + =  

 
where fP  is the particular frequency harmonic of the 
pressure, and tilde implies that a transformation to the 
Prandtl-Glauert plane may be required for 
simulations performed with a uniform flow. For the 
current problem of the flow around a cylinder, the 
computations are performed in the physical plane. 
Thus, the Helmholtz equation applies as is, with the 
Helmholtz number / 2SK c St Mω π= = , where Sc  
is the speed of sound. 

 
Figure 9. Directivity of the unsteady pressure harmonic 
corresponding to the acoustic frequency of St=0.23. 
r/D=0.5, 1, 5, 10 (with amplitude decreasing in this order). 

 
Figure 10: Comparison of the computed acoustic directivity 
with PTM predictions based on the near-field pressure from 
the surface of the cylinder (r/D=0.5). Results for St=0.23, 
(a) r/D=5 (b) r/D=10 (direct simulations show wake effect). 

 
Figure 11: Comparison of the computed acoustic directivity 
with PTM predictions based on the near-field pressure from 
the control surface at r/D=1. Results for St=0.23, (a) r/D=5, 
(b) r/D=10 (direct simulations show wake effect). 

 
 
 

COMPARISON OF ACOUSTIC PREDICTIONS 
 

Finally, in this Section, we compare results obtained 
for the acoustic directivity of the 0.23St =  harmonic, 
both based on the code simulations and the Potential-
Theoretical Method. These results are presented in 
Figures 10 and 11 for far-field circles located at 

/ 5r D = (a) and / 10r D = (b). In Figure 10, the near-
field unsteady pressure from the CFD code is 
supplied to the PTM code at the control surface 
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coincident with the surface of the cylinder, thus 
taking into account only the effect from the unsteady 
forces on the cylinder. In Figure 11, the near-field 
pressure is taken on the circle / 1r D = . One may 
note that no acoustic sources radiating at the 
frequency of 0.23St =  are expected beyond the 
surface of the cylinder, thus the results should remain 
practically the same. 
 
Overall, the comparison indicates that while the 
employed low-order modified TVD scheme still 
exhibits the numerical dissipation characteristic of 
such types of schemes, the level of dissipation 
appears rather moderate as the numerical solution 
maintains the dominant directivity shape. The 
computed amplitude appears slowly deteriorating 
relative to the PTM predictions as the far-field circle 
is transferred further from / 5r D =  to 10. Note that 
the results in Figure 11 actually appear closer 
compared to those in Figure 10, but this can be 
explained by the fact that the near-field pressure data 
taken on the control surface at / 1r D =  contains 
already a slightly dissipated solution. This is also 
confirmed in Figure 12 comparing the acoustic 
directivities obtained using the PTM code with the 
two control surface locations. 
 

 
 
Figure 12: Acoustic directivities from the PTM predictions 
based on near-field pressure from two control surface 
locations: at r/D=0.5 (solid line) and at r/D=1 (dashed line). 
Results for St=0.23, r/D=10. 
 
 
 
 
 
 
 

CONCLUSIONS 
 

The present work introduced a new CAA code based 
on a low-order modified TVD scheme for unsteady, 
compressible, viscous flow simulations. To validate 
the accuracy of the code, a test benchmark case was 
run for the viscous 2-D flow over a cylinder at a 
Mach number of 0.5 and a diameter-based Reynolds 
number of 100,000. The results for the directly 
resolved acoustic signature in the far-field were 
compared with the acoustic predictions based on the 
Potential-Theoretical Method that used the near-field 
unsteady pressure information from the CFD code 
(on a selected control surface) as an input. The 
comparison of the acoustic directivities revealed that 
while numerical dissipation remained present in the 
direct numerical simulation, the level of dissipation 
appeared rather moderate, and both the characteristic 
radiation frequency and the dipole-type directivity 
produced by the wake-induced unsteady forces on the 
surface of the cylinder were well resolved. 
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