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ABSTRACT 
 

This paper is concerned with the application of a 
new Space-Time Mapping Analysis (STMA) 
method to a nonlinear, inviscid computation of 
unsteady airfoil response to an impinging, high-
intensity, vortical gust. The method solves the 
unsteady problem as a steady-state one by treating 
the time coordinate identically to the space 
directions. A high-order discretization scheme is 
provided to achieve time-accurate predictions of 
both unsteady aerodynamic and aeroacoustic 
responses. The obtained results show localized 
zones in the computational plane where nonlinear 
response effects become important. 
 
 

INTRODUCTION 
 

In this work, a new numerical approach presented 
in Ref. [1] is applied to the nonlinear analysis of 
the unsteady gust-airfoil interaction problem. The 
new Space-Time Mapping Analysis (STMA) 
method has been developed to effectively treat any 
two- or three-dimensional unsteady problem as a 
steady-state one in a three- or four-dimensional 
space. This approach essentially paves the way for 
extending high-accuracy discretization schemes 
developed in Computational Aeroacoustics (CAA) 
for spatial derivatives to the time derivative, thus 
achieving highly time-accurate computations with 
absolute stability. It appears to provide additional 
flexibility of clustering the space-time grid in 
regions of rapid solution changes, and is well-
suited for distributed-memory parallel processing. 
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The traditional prediction methods employed in 
the field of Computational Aeroacoustics [2,3] are 
capable of retaining the nonlinear character of the 
equations while accurately capturing the 
propagating waves. The CAA codes have been 
developed to accurately capture transient flow 
behavior by combining a high-accuracy spatial 
differencing scheme with an optimized time-
marching method. Thus, they treat any unsteady 
problem as being a transient problem that requires 
high time accuracy throughout the calculation 
process. 
 
On the other hand, the gust-airfoil interaction 
problem is an example of a periodic problem, 
where the exact transient solution starting from the 
initial conditions may not be of interest. Instead, 
the long-term periodic solution is usually the 
desired output, with the excessive accuracy of the 
transient calculations being redundant. In the 
STMA approach proposed recently by Hixon [1], 
an unsteady marching problem in two spatial 
dimensions is transformed into a steady-state 
iterative problem in three dimensions. At the same 
time, the highly convergent iterative methods from 
classical CFD can be applied, increasing accuracy 
(by using better time derivatives), reducing CPU 
time (because of less grid points in space-time as 
well as improved iterative methods), and 
increasing the parallel performance of the code 
(through larger block volumes on each processor 
and reduced synchronization needs during the 
iterative process). 
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A numerical study of the CAA benchmark 
problem of a high-intensity gust-airfoil unsteady 
interaction has been previously conducted in Ref. 
[4] using a nonlinear high-order prefactored 
compact CAA code implementing the low-storage 
4th order 5-6 Low Dispersion and Dissipation 
Runge-Kutta scheme [5] for time marching, and 
prefactored 6th order compact scheme and explicit 
boundary stencils for spatial derivatives [6]. 
 
The present work revisits the problem and uses the 
STMA method to confirm the previous results, to 
obtain a more detailed picture of nonlinear 
interaction effects due to high-intensity gusts, and, 
most importantly, to examine the potential of the 
new computational method. 
 
 

GOVERNING EQUATIONS 
 

The unsteady, inviscid, nonlinear analysis of the 
high-intensity gust-airfoil interaction problem is 
based on the numerical solution to the unsteady 
Euler equations; written in Cartesian coordinates, 
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where the unsteady pressure is recovered from, 
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In this work, the gust response is investigated for a 
cambered, thick Joukowksi airfoil, which requires 
recasting the equations into generalized curvilinear 
coordinates. Similar to previous studies [4,7], 
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and the resulting Euler equations are of the form, 

 

0=++++ ηξηξ ηξηξ FFEEQ yyxxt       (3) 
 

The numerical study previously performed in Ref. 
[4] used the nonlinear high-order prefactored 
compact code to examine the unsteady response of 
both symmetric and cambered airfoils to an 
impinging vortical gust in the parametric space of 
gust dimension, intensity, and frequency. For the 
analysis of the nonlinear gust response problem, a 
C-grid 2D topology was generated for a 12% thick 
Joukowski airfoil. The same topology is applied in 
the present study. 
 
 

FORMULATION FOR STMA METHOD 
 

In the STMA process, the governing equations (1) 
are transformed into curvilinear coordinates that 
are all functions of space and time as follows: 

 
ξ = ξ x, y, t( )
η = η x, y,t( )
τ = τ x, y, t( )

 (4) 

 
In this development, it is important to note that τ  
is a function of x, y, and t; thus τ  is not, in 
general, a time-like variable. Substituting into Eq. 
(1), the following equations are obtained in the 
strong conservation form: 
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Note that the τ  coordinate is defined in space-
time in this approach, τ  = τ (x, y, t), rather than 
the usual definition of τ  = τ (t). Thus, there is no 
time-like variable in the STMA approach, and a 
standard time-marching approach cannot be used. 
Instead, an iterative method is used to solve Eq. 
(5). In the application to the unsteady gust-airfoil 
interaction problem, the periodic nature of the 
flow may be used to minimize the computational 
time and effort required to solve the test cases. For 
instance, the mesh is designed to cover one period 
of the vortical gust in the time direction, with a 
periodic boundary condition applied at the time 
inflow and time outflow boundaries. Thus, the 
computed solution is driven directly to the final 
long-term periodic solution of interest, rather than 
expending effort in accurately resolving the initial 
transient solution. 

 
PHYSICAL MODEL FOR GUST-AIRFOIL 

INTERACTION AND PREVIOUS RESULTS 
 

The unsteady, nonlinear airfoil response to an 
impinging vortical gust is examined for a series of 
imposed harmonic gust intensities and frequencies. 
The gust is initiated with the following distribution 
of perturbation velocity: 
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where ε is the gust intensity relative to the mean 
flow, α and β are the gust wavenumbers, and ω is 
the imposed gust frequency. The mean flow is 
defined far upstream from the airfoil as: 
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where M is the Mach number, and γ=1.4. 

The present study focuses on one particular case 
from a set of gust and airfoil configurations 
examined in Ref. [4]. In particular, a loaded, 12%-
thick 2%-cambered Joukowski airfoil is 
considered at a two-degree angle of attack. The 
impinging gust is two-dimensional, with 

kMkk 2,2,2 === ωβα  in Eq. (6). 
 

Figure 1 illustrates the computational domain used 
in Ref. [4] and is applied, with a few 
modifications, in the current study. The shaded 
contour plot illustrates the instantaneous 
perturbation velocity contours for the 2D gust 
interacting with the cambered airfoil, for a reduced 
gust frequency k=1 (non-dimensionalized by the 
airfoil chord and the upstream flow velocity) and 
an intensity equal to 20% of the mean flow. 

 
Figure 1: Instantaneous velocity, Y-component: k=1.0, 
2D gust, ε=0.20, cambered airfoil (from Ref.[4]). 
 
Results obtained in Ref. [4] for the gust reduced 
frequencies up to k=1.0 indicated a number of 
nonlinear effects in the unsteady airfoil response. 
In particular, those effects included generation of 
higher harmonics and combination tones 
associated with nonlinear self-interaction and 
exchange of energy between multiple imposed 
frequencies for gust amplitudes approaching 20% 
of the mean flow. Figure 2 further illustrates the 
predicted change in the airfoil acoustic directivity 
with increasing gust intensity at a distance of four 
chords away from the airfoil center-point. Note 
that, at least partially, these effects were attributed 
to the development of inviscid wake instability 
acting as a new non-compact source. 
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Figure 2: Effect of ε on |p’2|. Distribution at R=4 
(k=1.0, 2D gust, cambered airfoil (from Ref. [4]). 
 
 

NUMERICAL IMPLEMENTATION 
 

The H2 Advanced Concepts, Inc., Mapping 
Analysis Research Code 1 (MARC1) has been 
developed to solve the STMA equations [1,8]. 
This solver uses the Tam and Webb 7-point 4th 
order Dispersion Relation Preserving (DRP) 
scheme [2] with the 10th order artificial dissipation 

[3] added in all coordinate directions. To obtain 
the solution of Eq. (5), a time-like term may be 
added to the equation, and the third-order Runge-
Kutta scheme of Jameson et. al. [9] can be used in 
combination with implicit residual smoothing and 
local time stepping to accelerate convergence. For 
the test cases presented, however, a single iterative 
step is used with no implicit residual smoothing. 
All computations were run on a mesh of Nx*Ny*Nt 
= 433*125*17. On a singe-processor 2.8 GHz 
Linux PC station, a single case run was taking up 
to a week to fully converge. 
 
 

RESULTS AND DISCUSSION 
 

All results provided below are calculated for the 
mean flow Mach number M=0.5 and 2D gust 
reduced frequency k=1.0, for gust intensities 
ranging from ε=0.02 to ε=0.4. To validate the 
numerical computations, a comparison is 
conducted with the available GUST3D [10] 

frequency domain linear analysis calculations. It is 
assumed that results for a low-intensity gust 
(ε=0.02) should fall within the linear response 
limits, thus allowing such validation. 
 
Figure 3 provides illustration of the computational 
domain along with contours of the conservative 
variable ρv from the solution vector Q in Eq. (1). 
Note that the x-y plane corresponds to the 
computational domain in Figure 1, with the 
additional time coordinate along z. The translucent 
contour plot thus shows the gust evolution in space 
and time for ε=0.2. For the high intensity, the gust 
experiences notable distortions in the wake region 
of the airfoil. 
 

 
 
Figure 3: Instantaneous ρv–component for gust with 
ε=0.2. 
 
 
Aifoil Mean Pressure 
Along the surface of the airfoil, the aerodynamic 
response contains both the mean (due to the airfoil 
camber and angle of attack) and unsteady 
perturbation (due to the incident gust) pressure 
components. The results for the mean pressure 
distribution on the suction and pressure sides are 
compared in Figure 4 with computations from 
FLO36 mean flow solver used as input in the 
GUST3D code. Note that the STMA results are in 
good agreement with the FLO36 solution, with 
some deviation observed near the leading edge for 
the highest gust intensity of ε=0.4. In fact, the 
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STMA-produced pressure contours illustrated in 
Figures 5-6 for ε=0.02 and 0.4, respectively, show 
the presence of a shock and a small supersonic 
bubble in the case of the maximum gust 
amplitude. This produces the characteristic 
wiggles observed in Figure 4 near the shock 
region. An FFT analysis of the pressure solution 
did not, however, indicate any energy transfer 
between the mean flow and the higher frequency 
harmonics in this case. 
 

 
Figure 4: Airfoil mean pressure on the suction and 
pressure sides: comparison of FLO36 solution with 
STMA predictions at ε=0.02, 0.2 and 0.4. 
 
 
Airfoil RMS Pressure 
Figures 7-10 focus on the airfoil unsteady pressure 
RMS and FFT. A general comparison of GUST3D 
pressure RMS predictions with STMA 
computations for different gust intensities is 
provided in Figure 7. The response amplitudes are 
scaled to the same input gust amplitude to allow 
comparison. In all cases, the agreement is 
remarkable between STMA and GUST3D 
solutions, with small deviations observed near the 
trailing edge due to a local loss of numerical 
accuracy. It seems remarkable that moderate 
deviations in the mean pressure did not turn into 
much larger deviations in the unsteady pressure 
response. Moreover, the base FFT harmonic 
shown in Figure 8 appears to be closer to the 
GUST3D prediction, which is particularly 

noticeable for the highest gust intensity. This may 
indicate a nonlinear effect. Indeed, Figures 9 and 
10 provide further explanation by showing the first 
three FFT harmonics of the STMA solution. Note 
that for ε=0.4, both higher harmonics show a 
significant presence in the shock region 
(approaching x=0.1), confirming the importance of 
nonlinear effects in this area. 
 
 

 
 
Figure 5: Mean pressure contours for ε=0.02 (STMA 
calculation). 
 
 

 
 
Figure 6: Mean pressure contours for ε=0.4 (STMA 
calculation). 
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Figure 7: Airfoil RMS pressure on the suction and 
pressure sides: comparison of GUST3D solution with 
STMA predictions at ε=0.02, 0.2 and 0.4. 

 
 
 

 
Figure 8: Base harmonic of airfoil pressure FFT on the 
suction and pressure sides: comparison of GUST3D 
RMS solution with STMA predictions at ε=0.02, 0.2 
and 0.4. 
 
 
 
 
 
 
 
 

 
Figure 9: Base, first and second harmonics of airfoil 
pressure FFT on the suction and pressure sides: 
comparison of GUST3D RMS solution with STMA 
predictions at ε=0.2. 
 
 

 
Figure 10: Base, first and second harmonics of airfoil 
pressure FFT on the suction and pressure sides: 
comparison of GUST3D RMS solution with STMA 
predictions at ε=0.4. 
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Acoustic Directivity 
The unsteady pressure predictions in the near to 
far fields surrounding the airfoil are illustrated in 
terms of the directivity contours for the predicted 
intensity of the unsteady pressure signal. Results 
shown in Figures 11-14 provide the directivity 
plots at radii R=1,2,3 and 4, respectively (as usual, 
all distances are normalized by the airfoil chord, 
and unsteady responses are scaled by the same 
input gust amplitude). 
 
 

 
Figure 11: Directivity of |p’2| for RMS pressure at R=1. 
 
 

 
Figure 12: Directivity of |p’2| for RMS pressure at R=2. 
 

 
Figure 13: Directivity of |p’2| for RMS pressure at R=3. 
 
 

 
Figure 14: Directivity of |p’2| for RMS pressure at R=4. 
 
 
First, one may note significant deviations from 
GUST3D results observed in all cases. On the 
other hand, the same deviation for this gust-airfoil 
configuration has been observed before in Ref. [4] 
and was attributed to a known GUST3D problem 
in the far field (this problem has been recently 
resolved, but the relevant data has not yet been 
made available at the time of this publication). 
Most importantly, the results appear practically 
identical to predictions in Ref. [4]. In the current 
calculations, a domain of smaller size was used, 
and as a result, some distortions due to the 
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proximity of the far field boundary and inherent 
moderate reflections may be noticeable at R=4. In 
order to further understand the nature of these 
distortions (particularly noticeable for ε=0.4), the 
directivity contours were calculated for the base 
and first FFT harmonics of the unsteady pressure 
signal. 

 

 
Figure 15: Directivities of |p’2| for the base FFT 
harmonic at R=1,2,3 and 4. 
 
 
 

 
Figure 16: Directivities of |p’2| for the first FFT 
harmonic, at R=1,2,3 and 4. 
 
 

Clearly, nonlinear effects increase significantly for 
ε=0.4, compared to low gust intensities (the axial 
spike in Figure 15d is actually due to the 
aerodynamic pressure from the vortex which 
happened to locate at R=4). Still, the first 
harmonic remains one to two orders of magnitude 
lower than the base harmonic. Moreover, the base 
shows the same distortion of the upper lobe in 
Figure 15d observed for the RMS pressure in 
Figure 14. Thus, although the higher harmonic 
does appear to shoot in the direction of the lobe 
distortion (in Figure 16d), this effect may not be 
completely attributed to nonlinear generation of 
higher harmonics. Rather, this may also indicate 
the appearance of a non-compact acoustic source, 
or problems with reflections from the far field 
boundary. To obtain a clearer picture of these 
phenomena, the contour plots of the unsteady 
pressure RMS and FFT are presented next. 
 
 
Qualitative Analysis of Nonlinear Response 
To further understand the qualitative behavior of 
the unsteady solution throughout the domain, the 
unsteady pressure contour plots are now 
examined. The linear response for ε=0.02 is 
observed in Figure 17. The contours show 
propagation of the acoustics away from the airfoil 
along with formation of the characteristic dipole-
type radiation pattern observed in the previous 
directivity plots. 
 

 
 
Figure 17: RMS of unsteady pressure for ε=0.02. 
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Figure 18: RMS of unsteady pressure for ε=0.2. 
 
 
 

 
 
Figure 19: RMS of unsteady pressure for ε=0.4. 
 
 
While the previous Figure contained no (at least 
apparent) indication of the nonlinear wake 
development, both cases of ε=0.2 and ε=0.4 (in 
Figures 18 and 19) show significant effects of 
nonlinear wake evolution accompanied by strong 
aerodynamic pressure pulsations. Enlarged in 
Figure 20 for ε=0.4, this region shows 
characteristic vortex roll-ups and pairing, 
indicative of a nonlinear, inviscid wake instability. 

 
 
Figure 20: RMS of unsteady pressure for ε=0.4: airfoil 
and wake regions. 
 
 

 
 
Figure 21: FFT of unsteady pressure, base harmonic, 
ε=0.4. 
 
In general, acoustic radiation is known to develop 
from such nonlinear vortex interaction, but this is 
not evident from the current results. On the other 
hand, the presence of higher harmonics of the 
unsteady pressure response is confirmed by 
comparing the base and the first FFT harmonics of 
the signal in Figures 21 and 22 for ε=0.4. The 
nonlinearity, exhibited by the presence of the first 
pressure harmonic, is clearly localized in the wake 
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region, but it is also seen in the direction where the 
directivity lobe has been observed to develop a 
significant distortion (in Figure 14). Hence, at 
least some nonlinear effect appears present in this 
case. 
 
 

 
 
Figure 22: FFT of unsteady pressure, first harmonic, 
ε=0.4. 
 
 

 
 
Figure 23: Difference of base frequency and linear 
response RMS of unsteady pressure, ε=0.02. 
 
 

 
 
Figure 24: Difference of base frequency and linear 
response RMS of unsteady pressure, ε=0.2. 
 
 

 
 
Figure 25: Difference of base frequency and linear 
response RMS of unsteady pressure, ε=0.4. 
 
 
Finally, in order to quantify and localize effects 
from nonlinear gust-airfoil interactions, the 
difference of the appropriately scaled (by the 
corresponding amplitudes, for a unit input) base 
frequency and RMS of unsteady linear pressure 
response are shown in Figures 23-25 for ε=0.02, 
0.2 and 0.4. Note that zero difference in this case 
is an indication of a purely linear response. 
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Interestingly enough, some evidence of wake 
nonlinearity appears present even at ε=0.02, but 
the deviation from the linear behavior is very 
small (of the order of 1.e-4). On the contrary, the 
nonlinearities are clearly present for higher gust 
intensities. Those are still mostly localized in the 
wake, but are also again seen in the region above 
the airfoil. The relative amplitude of these 
nonlinearities appears to increase from about 1.e-3 
for ε=0.2, to approximately 1.e-2 for ε=0.4, which 
confirms the previous observations. 
 
 

CONCLUSIONS 
 

The paper examined the application of a new 
Space-Time Mapping Analysis (STMA) method to 
predict the nonlinear unsteady airfoil response to 
an impinging, high-intensity gust. By treating the 
time coordinate identically to the space directions, 
the STMA method essentially solved the unsteady 
2D interaction problem as a steady-state 3D one. 
A high-order discretization scheme was applied to 
achieve time-accurate predictions of both unsteady 
aerodynamic and aeroacoustic responses. 
 
The results for the 2D gust interaction with a 
cambered, thick Joukowski airfoil at an angle of 
attack were calculated for the mean flow Mach 
number M=0.5 and gust reduced frequency k=1.0, 
for gust intensities ranging from ε=0.02 to ε=0.4. 
To validate the numerical computations, a 
comparison was conducted with the frequency 
domain linear solver GUST3D. An excellent 
agreement with GUST3D data was observed for 
the mean and RMS pressure predictions along the 
airfoil surface. 
 
Results were also obtained by localizing the zones 
in the computational plane where nonlinear 
response effects appeared most significant. Such 
zones have been detected primarily in the wake 
region, but were also observed above the airfoil. In 
general, for the highest gust amplitude of 40%, the 
nonlinear deviation did not exceed 10% of the 
linear values. 
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