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ABSTRACT 
 
 

A COMPUTATIONAL STUDY OF FLOW AROUND A ROTATING DISC IN FLIGHT 
 

Dissertation in Aerospace Engineering by Axel Rohde 
 

Major Advisor:  Paavo Sepri, Ph.D. 
 
 
 

This dissertation presents a computational fluid dynamics (CFD) study of the flow around 
a rotating disc in forward flight. The computer model of the disc was an oblate ellipsoid 
of 6:1 radius ratio, which is similar in shape to common sport discs. The flow was 
computed on a boundary fitted hexahedral mesh of 60x40x80 cells at a Mach number of 
0.5 and a diameter based Reynolds number of 30,000. The angle of attack was held 
constant at 5 degrees, while the spin ratio, defined as the ratio of rim speed to forward 
speed, was varied between 0, 0.5, 1, and 1.5. 
 
The numerical algorithm was based on a finite volume description of the unsteady, 
compressible Navier Stokes equations and incorporated an eigensystem analysis of their 
inviscid subset. The stability of the fully explicit time marching scheme relied on the total 
variation diminishing (TVD) principle. No turbulence modeling was implemented, since 
the flow is predominantly laminar at the prescribed Reynolds number. 
 
The results indicate that flow separation on the aft portion of the disc can be entirely 
eliminated through rotation, which imparts a centrifugal force on the boundary layer and 
at the same time increases surface traction around the aft rim. At a spin ratio of 1, a single 
line of boundary layer separation is curled around the receding rim, where surface 
traction is minimal. The influence of rotation on aerodynamic forces appears to be weak. 
Lift peaks slightly at a spin ratio near 0.5, whereas drag grows slowly with increasing 
rotation rate. The pitching moment is virtually unaffected by rotation. For counter-
clockwise spin, a small left steering force is observed. 
 
The software for the computational analysis was developed on a Windows PC, equipped 
with a 1GHz Pentium processor and 384MB of RAM. Restricted by the small integration 
time step, a single run took nearly two weeks to converge. An installation file for the 
software as well as data files for all computations can be downloaded from the author’s 
website at www.microcfd.com. Also available for free download is a complete digital 
copy of this dissertation in portable document format (PDF). 
 
 

http://www.microcfd.com/
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1.  INTRODUCTION 
 
This chapter starts with a brief history of flying discs, including an overview of the aerodynamics involved. 
Thereafter, a short literature review is presented on past research in disc aerodynamics, highlighting some 
of the major works. The chapter concludes with the original statements of motivation and objectives that 
were initially proposed. 
 
 
 
1.1  A Brief History 
 

The rotary flying disc has been known as early as the ancient Greek Olympics, and it has remained an 
Olympic discipline ever since that era. The flying disc as a sport became very popular during the latter half 
of this century with the advent of Frisbees ®. Their original shape was derived from pie tins tracing back to 
the Frisbie Pie Company, which was founded around the turn of the century near Yale University [18]. 
Throwing empty pie tins, turned upside down, became a popular leisure activity of Yale students during the 
1920’s. After the Second World War, Frederick Morrison, a resident of Los Angeles, realized the 
commercial potential of throwing pie tins. As plastic technologies had evolved, he built the prototype of the 
modern flying disc using butyl stearate. The Wham-O Corporation, a California based toy manufacturer, 
bought Morrison’s idea and coined the trademark “Frisbee” after its predecessor, the “Frisbie” pie tin. 
Although the shape of the Frisbee was patented by Wham-O, its name became synonymous with many 
other brands of injection molded plastic sport discs throughout the world. The quest for the perfect 
aerodynamic shape of a flying disc still continues today. A “perfect” design combines total stability—no 
steering to either side—with maximum range. Alan Adler, a lecturer at the Stanford University, may have 
achieved this task by perfecting his version over the past ten years, which is known as the Aerobie 
Superdisc ®. 
 
 
 
1.2  Aerodynamic Overview 
 

Aerodynamically, flying discs are intriguing because of their simplicity in shape, which is in direct contrast 
to their exceptional flying capabilities. A flying disc is both an airfoil and a gyroscope, the former 
producing lift, and the latter providing stability. From an aerodynamicist’s viewpoint, a flying disc is 
essentially a wing of low aspect ratio. The aspect ratio AR of a wing is defined to be the square of its span 
divided by the wing’s planform area [5], 

 

 
( )2Wing Span
Planform Area

AR =  (1.1) 

 
The planform area of a disc is its circular projection, and the span is equal to its diameter D. Thus, the 
aspect ratio of a disc is simply, 

 

 
( )

2

2

4 1.273
2

DAR
D ππ

= = ≈  (1.2) 

 
Generally, a wing with a high aspect ratio has a high lift-to-drag ratio L/D, and conversely, a low aspect 
ratio wing is characterized by a low value of L/D. For example, high performance gliders have long wings 
with aspect ratios as high as forty, and a corresponding lift-to-drag ratio of about forty, whereas for fighter 
planes, both aspect ratio and maximum lift-to-drag ratio are usually no greater than five [5]. 
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The direct correlation between aspect ratio and maximum lift-to-drag ratio can be explained as follows: 
whenever a wing produces lift, the difference in pressure levels between the upper and lower surface 
generates a cross-flow around the wing tips, resulting in wing tip vortices which annihilate a small portion 
of lift. The greater the aspect ratio, the lesser is the adverse effect of wing tip vortices as compared to the 
proportion of lift generated by the remaining wing. This explains why sailplanes have such excellent glide 
performance, and why fighter planes nearly drop out of the sky after engine failure. For unpowered flight, 
the lift-to-drag ratio is simply equal to the cotangent of the glide angleγ [6], 

 

 cot L
D

γ =  (1.3) 

 
One would expect the lift-to-drag ratio of a flying disc to be close to unity, because its aspect ratio is not 
much greater than one, either. For a lift-to-drag ratio between one and two, the corresponding glide angle 
would lie somewhere between 30 and 45 degrees. Such a steep descent, however, is usually not the case 
when we look at the flight of a Frisbee from a tall building, for instance. Most discs have a glide angle 
somewhere between 10 and 20 degrees, which implies a lift-to-drag ratio between three and five. A wind 
tunnel experiment carried out by students at Brown University, using three different Frisbees, suggests that 
a lift-to-drag ratio as high as seven or eight can easily be achieved under optimum conditions for angle of 
attack, wind speed, and rotation rate. 
 
It is needless to point out, that a rotating flying disc possesses considerable aerodynamic efficiency for its 
low aspect ratio. What makes it even more attractive though, is its gyroscopic nature which enables a stable 
flight. Without rotation, a Frisbee would act like a wing, and no matter how carefully thrown, it could not 
maintain steady flight. Due to its angular momentum, however, a rotating disc is able to resist small 
disturbances in pitch and roll. In contrast, a wing by itself is aerodynamically unstable, which means that 
even the smallest disturbance from the steady flight equilibrium will result in continuous pitch up or pitch 
down until the entire wing is stalled. Birds and conventional airplanes have tails to overcome the inherent 
instability of their wings. The augmented stability of the tail though is at the expense of the negative lift it 
produces. During steady, level flight, tails push down, which is an inefficiency as far as overall lift is 
concerned. Flying discs, on the other hand, have their stability “built in” and are thus free from added 
inefficiencies. 
 
The only type of flight instability experienced by a rotating disc is its tendency to steer to the left or right 
during forward flight, which stems from the fact that the center of lift does not necessarily coincide with the 
center of gravity. Depending on the location of the center of lift, which can be either forward or aft with 
respect to the center of gravity, the disc will experience an aerodynamic pitching moment. Due to 
gyroscopic precession, however, a pitching moment will result in banking to either side, depending on the 
sign of the pitching moment and the orientation of the spin. Without using any rigorous mathematical 
formulation, gyroscopic precession can simply be defined as the 90 degree advancement of a net effect of 
any force acting normal to the plane of rotation. In other words, the effect which the applied force would 
have produced on a non-spinning disc will be carried by the spin through a quarter turn. 
 
The disc shown in Figure 1-1 would therefore bank to the right, because its center of lift is slightly aft of 
the center of gravity, or center of mass. Due to symmetry, the center of mass is located along the axis of 
rotation. The thrower can compensate this effect by releasing the disc with a small opposite bank angle, 
which disc enthusiasts often refer to as the hyzer angle [18]. A disc thrown with just the right hyzer angle 
will preserve its initial tilt and will also fly along a straight path, similar to an airplane making a low wing 
approach for a cross wind landing. 
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Next to the apparent rolling moment, a spinning disc also experiences a minor side force, known as the 
Magnus force [14]. Heinrich Gustav Magnus, a German physicist, discovered in 1852 that the flow of air 
over a rotating cylinder creates lift, because the difference in flow speed over its top and bottom surface 
results in a difference in pressure. One can think of a spinning disc as a short section of a rotating cylinder. 
The Magnus effect is more pronounced for sliced golf balls and tennis balls, which have larger lateral 
surface areas. For a rotating disc, the side drift due to the Magnus force is hardly noticeable. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1-1:  Aerodynamic Forces Acting on a Frisbee 
 

 
 
1.3  Literature Review 
 

A general description of flying disc aerodynamics, as given above, can be found in many textbooks on disc 
sport, for example by Shelton [19] and Simon [20]. A comprehensive article on Frisbee aerodynamics was 
written in 1990 by a former Swiss disc-throwing champion, Macé Schuurmans [18]. The article, published 
in the popular British journal New Scientist, thoroughly explains the aerodynamic forces on Frisbees, their 
origin, as well as their effect on overall flight dynamics. 
 
Although most interest in flying discs is of purely recreational nature, a few researchers have devoted their 
time to the subject. In 1960, Mugler and Olstad performed a series of wind tunnel tests at the NASA 
Langley Research Center, investigating the aerodynamic characteristics of a lenticular shape at transonic 
speed [12]. At the time, NASA conducted an extensive study of general lifting bodies suitable for reentry 
vehicles. The non-rotating lenticular shape turned out aerodynamically unstable and was later abandoned. 
 
Along this line of research, Paul Katz published a paper in 1968 in the Israeli Journal of Technology [10]. 
His work, done under the Israeli Ministry of Defense, was focused mainly on stability criteria and flight 
trajectories rather than disc aerodynamics per se. His research was motivated by the idea that a rotating disc 
in supersonic flight could be a possible candidate for replacement of ballistic artillery shells. 

Wind Magnus Force 

Drag 

Lift 

Weight 

Spin 
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Another, more modern, military application of a (very slowly) rotating disc in flight is the ellipsoidal radar 
dome on top of the Boeing 767 Airborne Warning and Control System (AWACS). Unfortunately, no 
aerodynamic data for the AWACS could be found in the published literature, and a direct request for 
information made to Boeing turned out unsuccessful. 
 
In 1980, a group of students at Brown University designed and calibrated a wind tunnel force balance for 
testing of Frisbees. Evaluating three different molds, many measurements of lift and drag were taken for 
varying wind speed, rotation rate, and angle of attack. As mentioned earlier, the experimental data suggest 
that excellent lift-to-drag ratios can be achieved—as high as eight—under optimum conditions (see 
Appendix C). Although this student report is probably the only source of experimental data available on 
Frisbees, the results have never been published. 
 
The most insight into Frisbee aerodynamics was gained through an experiment performed by two Japanese 
researchers at Kyushu University in 1989. Nakamura and Fukamachi conducted a wind tunnel flow 
visualization over a Frisbee mounted on a rotating shaft, utilizing a smoke wire method which they had 
developed earlier. Their findings were published in 1991 under the title “Visualization of Flow past a 
Frisbee” in the journal Fluid Dynamics Research [13]. A video tape of the entire experiment was also 
made, which can be requested from the address listed with the article. 
 
In summary, Nakamura’s and Fukamachi’s research findings were as follows: The camber of a Frisbee 
creates a pair of longitudinal vortices near the rim as air flows over it at a vanishing angle of attack. Even 
when the Frisbee is not rotating, this vortex pair induces considerable downwash, thereby producing lift. 
The onset of rotation further strengthens this vortex pair, which results in enhanced downwash and 
increased lift. In addition, the rotation creates a differential in the strength of the two vortices, resulting in a 
slightly asymmetric flow field. 
 
 
 
 
1.4  Motivation and Objective 
 

It is the author’s opinion that the aerodynamics of rotary flying discs have not been thoroughly studied. 
Until now, very little analytical or experimental work could be found in the literature [8]. Computational 
studies on flow past rotating discs are either non-existing, or they have never been published. One reason 
for the apparent lack of interest for the subject matter in aerodynamic research could be that the application 
of flying discs has been purely recreational so far. 
 
From the perspective of a fluid dynamicist, however, the rotating disc in flight should be intriguing because 
of its simple shape, which is in direct contrast to the complex flow pattern surrounding it. What seems even 
more surprising is the fact that the center of lift nearly coincides with the center of mass for most sport 
discs, resulting in long-range stability, despite the flow asymmetry induced by the rotation. Moreover, the 
excellent glide angle of most Frisbees is in direct contrast to their low aspect ratio. 
 
The mystery of disc aerodynamics could possibly be unveiled through a computational fluid dynamics 
(CFD) analysis. The advantages of CFD over traditional wind tunnel testing are manifold: (1) the only 
necessary hardware needed for testing is a computer; (2) once the governing flow equations are solved 
around a particular aerodynamic shape, the entire flow field is known in terms of local velocity, pressure, 
density, and temperature; (3) aerodynamic forces such as lift and drag, as well as any pitching or rolling 
moments can be easily computed from the solution by integration of the surface forces. 
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The initial objective of the proposed research was to carry out a CFD analysis for various disc shapes under 
a multitude of flight conditions, for example, by varying forward speed, rotation rate, and angle of attack. 
As the development of the computer program progressed, however, it became evident that a single flow 
simulation at reasonable resolution would take more than two weeks to compute, even on a PC equipped 
with an Intel 1GHz Pentium processor and 384MB of system RAM. Under these circumstances, the 
numerical analysis had to be limited to only a few flight configurations of a single, “generic” disc shape. 
Instead of computing the flow over an actual Frisbee, which is turbulent to a large extent, it was decided to 
select a more streamlined shape of comparable thickness, an ellipsoid of 6:1 radius ratio. The difference 
between laminar and turbulent flow for the two shapes is illustrated in Figure 1-2 below. Turbulence 
modeling—as initially proposed—has therefore been excluded, which resulted in a significant time saving. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1-2:  Laminar versus Turbulent Flow 
 
 
A few more compromises had to be made in order to reduce the computation time to two weeks for a single 
run. The flow Reynolds number, a dimensionless ratio measuring inertial to viscous effects, was reduced by 
nearly a factor of six from the typical value associated with common sport discs. As a result, the average 
boundary layer thickness approximately doubled, which eased the resolution requirement near the disc’s 
surface. Also, despite the fact that the flow over Frisbees is in the incompressible range (M < 0.1), it was 
decided to develop a compressible flow solver—which is more physical—and run the simulation at a Mach 
number of 0.5 instead. In subsonic flow, the effect of compressibility on boundary layer growth is minimal. 
Although the higher Mach number increases the pressure range, the relative pressure distribution at M = 0.5 
is comparable to that of an incompressible flow field, and thus aerodynamic coefficients are similar in both 
regimes. For a compressible flow solver, the total computation time decreases with increasing Mach 
number, which is why the higher Mach number was chosen. 
 
Upon conclusion of the study, a few fundamental questions are addressed, including the following: How 
does the rotation rate affect lift and drag? Does the aerodynamic center move through the onset of rotation, 
and if so, what is the effect on flight stability? How does rotation influence boundary layer growth and flow 
separation? Can the experimental research findings—particularly the flow visualization of Nakamura and 
Fukamachi—be verified, and to what degree? 

Turbulent Flow over Frisbee 

Laminar Flow over Ellipsoid 
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2.  SOLUTION OVERVIEW 
 

This chapter contains a brief overview of the basic physical system and mathematical model for the 
computation of flow over a rotating disc in forward flight. Also included is a general outline of the 
computational method for solving the governing equations, explaining the main underlying concept. The 
details of the mathematical description and algorithm development are presented in the following chapters. 

 
 
2.1  Physical System 
 

The shape of our “generic” disc, represented by an ellipsoid of 6:1 radius ratio, is depicted in Figure 2-1. 
Typically, an ellipsoid is generated through the rotation of an ellipse around its major or minor axis. 
Rotation around the major axis produces a prolate ellipsoid, comparable to the shape of a submarine, 
whereas rotation around the minor axis results in an oblate ellipsoid, or disc. The disc shown below is the 
actual computer model used in all computations. Its dimension and flight parameters were chosen to 
roughly match the flow Reynolds number and spin ratio—and thus the boundary layer effects—of common 
sport discs. According to Macé Schuurmans [18], the typical forward speed of a Frisbee generally ranges 
between 5 and 15 m/s at a rotation rate of about 5 to 15 revolutions per second, depending on the thrower. 
Thus an average spin ratio SR, defined as the ratio of rim speed to forward speed, for a sport disc would be, 

 

 ( ) ( )
( )

0.25m 10 rps
0.8

10 m/s
D fSR
V

ππ
∞

= =  (2.1) 

 
For the same disc diameter D  and forward speed ∞V , and based on a viscosity µ , density ρ∞ , and speed of 
sound a∞  of air at sea-level conditions, the corresponding flow Reynolds and Mach number would be, 

 

 
( ) ( ) ( )

( )
3

5 1 1

1.225kg/m 10 m/s 0.25m
170,000

1.7894 10 kg m s
V DRe

x
ρ

µ
∞ ∞

− − −
= =  (2.2) 

 

 10 m/s 0.03
340 m/s

VM
a

∞

∞

= =  (2.3) 

 

 
Figure 2-1: 3-D View of Ellipsoidal Disc 
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For small angles of attack, 5α ≤ , the flow over our ellipsoidal disc shall be assumed fully laminar, 
implying that no turbulence shall be present, neither in boundary layer nor wake. Transition to turbulence 
generally does not occur at Reynolds numbers below 300,000 for streamlined bodies [17]. In order to 
accelerate convergence of the computation, the flow Mach number was not matched in our analysis, which 
only has a minimal effect on boundary layer growth in fully subsonic flow. All computations were carried 
out at a Mach number of M = 0.5 and a reduced flow Reynolds number of Re = 30,000. The angle of attack 
was held fixed at 5 degrees, while the spin ratio was varied between 0, 0.5, 1, and 1.5. 
 
 
 
2.2  Mathematical Model 
 

The CFD analysis of our rotating disc in forward flight is based on a finite volume description of the 
unsteady, compressible Navier Stokes equations, solved on a boundary fitted, curvilinear, structured mesh. 
A longitudinal cut through the actual finite volume mesh used in all computations is shown in Figure 2-2. 
The finite “volumes” consist of hexahedral cells—distorted cubes, some of them compressed—which are 
generated when the 2-D mesh shown below is rotated around its vertical axis of symmetry. Cells near the 
surface are highly flattened, in order to resolve the strong gradients present within the boundary layer. Flow 
gradients weaken as one moves further away from the disc, and at the spherical outer boundary, which is 
several disc diameters away from the center of the disc, the flow is assumed to be undisturbed. 

 

 
 

Figure 2-2: Cross-Section of 3-D Finite Volume Mesh 
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It is important to point out that the mesh remains fixed in space at all times. Whether or not the disc is 
rotating solely affects the surface boundary condition. Therefore, the governing flow equations for an 
inertial frame of reference can be used. For a calorically perfect gas—constant specific heats—with 
negligible body forces, the five conservation equations are stated below in a coordinate independent 
integral format (note that the momentum equation is a vector equation with three components). 
Collectively, these equations are referred to in the literature as the “full” Navier Stokes equations (FNS). 

 
 

Mass: 

 0
CV CS

dV v dA
t

∂ ρ ρ
∂

+ ⋅ =∫ ∫  (2.4) 

 
Momentum: 

 
CV CS CS

v dV v v dA dA
t

∂ ρ ρ σ
∂

+ ⋅ = ⋅∫ ∫ ∫  (2.5) 

 
Energy: 

 ( )o o
CV CS CS

e dV e v dA v q dA
t

∂ ρ ρ σ
∂

+ ⋅ = ⋅ − ⋅∫ ∫ ∫  (2.6) 

 
 

The integral subscripts CV and CS represent cell volume and cell surface, respectively. The vector 
differential ˆdA n dA=  incorporates the outward unit normal into its differential surface. Based on a local 
fluid density ρ , the stagnation energy per unit mass oe  is defined as the sum of internal and kinetic 
energy, 
 1

2o ve c T v v= + ⋅  (2.7) 
 

The general stress tensor σ  can be split into two parts, one relating to the thermodynamic pressure p using 

the identity tensor I , the other part being the viscous stress tensor τ , 
 

 p Iσ τ= −  (2.8) 
 

Assuming a constant coefficient of viscosity µ , the viscous stress tensor τ  is a function of velocity 
gradients, and based on a locally orthogonal frame of reference can be expressed as follows, 

 

 ( )( ) 2
3

Tv v I vτ µ µ= ∇ + ∇ − ∇⋅  (2.9) 

 
where v∇  and its transpose shall be recognized as dyadic products between velocity vector and gradient 
operator. A zero bulk viscosity 2

3'µ λ µ= +  is implied in Equation (2.9) according to Stokes’ hypothesis. 
 
The heat flux vector q can be related to its temperature gradient via Fourier’s law of heat conduction, 
where the thermal conductivity κ  shall be assumed constant, 

 
 q Tκ= − ∇  (2.10) 
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Density, pressure, and temperature are connected by the perfect gas law, where the gas constant R  is the 
difference between the specific heats at constant pressure and constant volume, pc  and vc , respectively, 

 
 p Tρ= R  (2.11) 

 
 p vc c= −R  (2.12) 

 
Further, the thermal conductivity κ  can be related to the dynamic viscosity µ  via the Prandtl number Pr, 

 

 pc
Pr

κ µ=  (2.13) 

 
Based on kinetic gas theory, the Prandtl number for air, which is primarily a mixture of diatomic gases, can 
be determined through Eucken’s relation [22], 

 

 4
9 5

Pr γ
γ

=
−

 (2.14) 

where, 

p

v

c
c

γ =  

 
For air, 7 / 5 1.4γ = = , and thus 28 / 38 0.74Pr = . A Prandtl number near unity implies that momentum 
and thermal diffusion in a gas both occur on the same scale. In practical terms, it means that the thin 
thermal and velocity boundary layers near a heated aerodynamic surface roughly coincide. 
 
With the above constitutive relations, the system of integral conservation equations is now closed. We have 
five equations for five unknowns: three velocity components and two thermodynamic state variables, such 
as pressure and temperature. In order to obtain a solution, we still need an initial condition and two sets of 
boundary conditions, one for the disc surface, and the other for the far-field outer boundary. 
 
The initial condition of the flow is somewhat arbitrary and should not influence the steady state solution. 
However, it is common practice to simply initialize the flow properties at all interior volume cells with 
their free stream values. Physically, this would represent an impulsive start of the disc from rest. 
 
The free stream boundary condition—as the name implies—simply forces the flow properties at the outer 
boundary to their free-stream values, i.e., uniform velocity according to the general flow direction, as well 
as uniform pressure and temperature depending on ambient conditions. The gradients of all flow properties 
are set to zero at the outer boundary, which is consistent with the idea of undisturbed uniform flow. 
 
The surface boundary condition is expressed in two parts, a no-slip condition for the velocity components, 
and a no-flux condition for the energy exchange. The no-slip condition implies that fluid particles in contact 
with the surface have no relative velocity with respect to it—they literally stick to the surface. For a rotating 
disc, there is a non-zero velocity component—with respect to the fixed frame of reference—in the 
tangential direction. The radial and normal velocity components at the surface, however, are always zero. 
The no-flux condition requires that no heat is exchanged between the disc and the surrounding fluid, or in 
other words, the disc is perfectly insulated. As a result, the temperature at the surface will not be uniform, 
but rather be equal to that of the nearby fluid. 
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2.3  Computational Method 
 

The conservation equations are solved numerically in their finite volume format, by starting with an initial 
condition of uniform flow, which is equivalent to an instantaneous acceleration of the disc from rest. By 
explicitly marching in time, the flow field is then integrated until an asymptotic state is achieved. The term 
“asymptotic” implies that the converged solution may not be frozen in time, but rather experience small 
periodic oscillations near the surface and within the wake. This phenomenon is physically consistent with 
the continuous shedding of vortices that may take place, depending on the flow Reynolds number. Once the 
flow is fully accelerated and developed, rotation is added in finite increments by altering the surface 
boundary condition. In between angular accelerations, the solution is again marched in time until a new 
steady or asymptotic state sets in. 
 
The spatial discretization of the fluxes involved in each integration time step is modeled according to the 
total variation diminishing (TVD) concept, which is explained in more detail in the following subsection. 
The TVD algorithm employed in this program is essentially comprised of two parts: centrally split fluxes, 
which are equivalent to a central difference formula within a finite difference context, and small corrective 
eigenfluxes, whose function is to limit the overall flux exchange such that stability of the computation is 
always guaranteed. The centrally split fluxes by themselves contain no numerical viscosity, and their 
unrestrained flux would quickly lead to numerical oscillations in the flow field and subsequent divergence. 
The eigenfluxes, however, prevent these oscillations by recognizing the local wave character through an 
eigensystem analysis and appropriately limiting the flux exchange. Earlier numerical schemes, such as the 
popular flux vector splitting (FVS) algorithms, contain a hefty amount of inherent numerical viscosity, 
which dampen unwanted oscillations within the flow field, but also smear boundary layer gradients beyond 
recognition. The TVD schemes, on the other hand, are designed such that the amount of numerical 
viscosity can either be determined through a control parameter, or minimized by setting such parameter 
equal to zero. This feature makes the TVD algorithms highly desirable for compressible viscous flow 
computations, because of their ability to preserve strong gradients within boundary layers. 
 
 
 
2.3.1  The TVD Concept 
 

To better grasp the total variation diminishing (TVD) concept, we shall briefly shift our focus away from 
the more complex FNS equations to a much simpler model equation. Written in differential form, we shall 
consider the following one-dimensional conservation equation for general waves, 

 

 ( ) 0u f u
t x

∂ ∂+ =
∂ ∂

 (2.15) 

 
For ( )f u a u= , with 0a > being a constant, Equation (2.15) would be the well known linear wave equation. 
If the wave speed a is not a constant, but rather a function of u or x, or both, then the wave is nonlinear. 
Physically, the difference between a linear and nonlinear wave is as follows: a linear wave always 
preserves its own character, in other words, its initial shape, or waveform remains unchanged as it travels 
through a quiescent medium. In comparison, a nonlinear wave generally becomes distorted while traveling. 
For example, a nonlinear wave that started out as a single sinusoid could either become expanded over 
time—and ultimately vanish through attenuation—or undergo compression and eventually turn into a 
square wave. For now, visualize the variation of u along x over a period of time for such a traveling wave. 
Except for square waves, where a one-sided limit applies, both u and its derivative, u x∂ ∂ , are known at 
any given point in space. An interesting property of physical solutions governed by Equation (2.15) is that 

u x∂ ∂  integrated over the entire domain along x does not increase with time for fixed boundary 
conditions. This integrated quantity is referred to as the total variation, and shall be denoted by TV, 
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 uTV dx
x

∂=
∂∫  (2.16) 

 
Thus for a physically correct solution to Equation (2.15), TV does not increase with time. In practical terms, 
this implies that although a waveform can change its character, it cannot grow over time, i.e., maxima 
cannot increase, and minima cannot decrease. Also, the amount of oscillation within a solution can only 
decrease over a time period, e.g., a maximum cannot split into two maxima and a minimum. For a 
numerical solution of Equation (2.15), in which u x∂ ∂ can be discretized by 1( )i iu u x+ − ∆ , Equation (2.16) 
can be rewritten as, 

 

 1( ) i i
i

TV u u u+= −∑  (2.17) 

 
Equation (2.17) defines the total variation in x of a discrete numerical solution. If ( )pTV u and 1( )pTV u +  
represent Equation (2.17) at subsequent time levels, a numerical algorithm is total variation diminishing, if 

 
 1( ) ( )p pTV u TV u+ ≤  (2.18) 

 
Therefore, any numerical scheme that follows the physical behavior of a conservation equation of the 
general form given by Equation (2.15) must be a TVD scheme. The TVD property implies, both physically 
and numerically, that the amount of variation present within a solution at any time is limited by its initial 
and boundary conditions. This concept will become clear in the next chapter, when different TVD schemes 
are applied to the one-dimensional, inviscid flow within a shock tube. 
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3.  PRELIMINARY ANALYSIS 
 
An important subset of the full Navier Stokes (FNS) equations is introduced in this chapter: the Euler 
equations of inviscid flow. The FNS equations inherit their wave-like character directly from the Euler 
equations, which will become evident in an eigensystem analysis. In eigenvector format, the conservation 
equations of inviscid flow fit the general form of a wave equation, for which the TVD concept can be 
readily utilized. Based on the general three-dimensional results of the analysis, the equation subset for one-
dimensional inviscid flow is then applied to the shock tube problem, which will illustrate the wave 
character of the equations. Different TVD algorithms are presented from a literature review and are 
individually applied to solve the flow within a shock tube. The numerical results from each computation are 
compared to an analytical solution of the shock tube problem in order to evaluate each algorithm. The 
derivation of the eigensystem for the Euler equations was aided by the analysis software Mathematica from 
Wolfram Research, Inc. Similar results found in the literature [23-26] are less compact. 
 
 
 
3.1  Equations for Inviscid Flow 
 

The conservation equations for inviscid flow, which are commonly referred to as the Euler equations, are 
derived from the FNS equations by eliminating the viscous stress tensor and heat flux vector. This can be 
accomplished by simply setting the dynamic viscosity µ  equal to zero—thus the name inviscid. For the 
subsequent eigensystem analysis, it is advantageous to write the Euler equations in a column vector format, 
where each column represents the full set of conserved properties—mass, momentum, and energy. Note 
that all column vectors, being five dimensional, are denoted by half arrows and are thus distinguishable 
from three-dimensional physical vectors. Written in compact column format, the Euler equations are, 

 
 0

CV CS

Q dV F dA
t

∂
∂

+ =∫ ∫  (3.1) 

 
where, 

  ,        

n

n x

n y

n z

o o n

v
u u v p n

Q Fv v v p n
w w v p n
e h v

ρ ρ
ρ ρ
ρ ρ
ρ ρ
ρ ρ

   
   +   
   = = +
   +   
      

  

 
The velocity across a cell boundary is simply defined as the dot product of local velocity vector and 
outward unit normal vector to the boundary, 

 
 2 2 2ˆ  ,       1n x y z x y zv v n u n v n wn n n n= ⋅ = + + + + =  (3.2) 

 
The stagnation energy and enthalpy per unit mass are the sum of static and dynamic parts, respectively, 

 
  ,      o k o ke e e h h e= + = +   

(3.3) 
 ( )2 2 21

2ke u v w= + +   
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with ek  being the kinetic energy per unit mass. Static energy, enthalpy, and pressure can all be expressed in 
terms of the local speed of sound a , a function of temperature, and the ratio of specific heats γ , 

 

 
( )

2 2 2

 ,       ,      
1 1

a a ae h p ρ
γ γ γ γ

= = =
− −

 (3.4) 

where, 
 2  ,      p va R T c cγ γ= =   
 
 
 
3.2  Eigensystem Analysis 
 

The first step in determining the eigensystem of the above conservation equations is to derive the 
corresponding Jacobian or transformation matrix, which can be found by taking partial derivatives of the 
flux vector components Fi  with respect to the flow vector components Qj  after expressing the flux vector 
solely in terms of the flow vector. Only the resulting transformation matrix shall be presented here, 

 

[ ]
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

0 0
1 2 1 1 1
1 1 2 1 1
1 1 1 2 1
1 1 1 1

x y z

k x n n x y x z x x
i

k y n x y n y z y y
j

k z n x z y z n z z

k o n o x n o y n o z n

n n n
e n u v v u n u n v n u n w n n

F e n v v v n u n v v n v n w n nA
Q e n w v wn u n w n v n v w n n

e h v h n u v h n v v h n w v

γ γ γ γ γ
∂ γ γ γ γ γ
∂ γ γ γ γ γ

γ γ γ γ γ

− − − − − − − − −
− − − − − − − − −= =
− − − − − − − − −
− − − − − − − −   nv

 
 
 
 
 
 
  

 

 

(3.5) 
We can now rewrite the Euler equations in the format of a general wave equation, 

 

 ( ) 0
CV CS

Q dV F Q dA
t

∂
∂

+ =∫ ∫  (3.6) 

where, 
 [ ]( )F Q A Q=   

 
Analogous to the wave speed a of the 1-D model equation presented in Section 2.3.1, the transformation 
matrix [A] can be interpreted as a wave speed with local and directional dependence for a nonlinear multi-
dimensional wave. The multi-dimensional character is really twofold: (1) we are now working in a 3-D 
flow field, where waves can travel in any direction; (2) there are different types of waves, all traveling at 
their own characteristic speeds, which are determined by the eigenvalues of the transformation matrix [A]. 
 
 
 
3.2.1  Eigenvalues and Right Eigenvectors 
 

The eigenvalues of the transformation matrix [A] are the roots λi of the characteristic equation, 
 

 ( )det [ ] [ ] 0A Iλ− =  (3.7) 
 

where [I] is the identity matrix. It turns out that three eigenvalues are distinct and two are repeated, 
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 { , , , , }i n n n n nv a v v a v vλ = − +  (3.8) 
 

Each right eigenvector Ri , corresponding to eigenvalue λi , must satisfy the following matrix equation, 
 

 [ ] i i iA R Rλ=  (3.9) 
 

Being column vectors, the right eigenvectors can be collectively written in matrix form, such that, 

 

[ ] 1 2 3 4 5

1 1 1 0 0

0(R-1):       
0

x x y z

y y x

z z x

o n k o n y x x z

u a n u u a n n n
v a n v v a n nR R R R R R
w a n w w a n n
h a v e h a v u n v n w n u n

 
 − + − 
 − + − = =   − + 
 − + − − 

 (3.10) 

 
It should be noted at this point that the eigenvectors of repeated eigenvalues are not distinct! They span a 
subspace and any vector within this subspace is also an eigenvector of the same repeated eigenvalue. In the 
general space 5 above—for which R1  through R5  form a basis—the eigenvectors R4  and R5 , which 

belong to the repeated eigenvalues 4 5 nvλ λ= = , span a two dimensional subspace. Any linear combination 

of R4  and R5  is itself a member of that subspace and is thus also an eigenvector. For example, a sixth 

eigenvector, which would satisfy the equation [ ] 6 2 6A R Rλ= , could be formed as follows, 

 

 6 4 5

0
0

yz
z

x x
y

z y

nn nR R R
n n n

v n w n

 
 
 −   −  = + =   
     − 
 − 

 (3.11) 

 
The following sets of right eigenvectors, again written in matrix format, are equally valid with (R-1), 

 

[ ] 1 2 3 4 6

1 1 1 0 0
0

(R-2):       
0

x x y

y y x z

z z y

o n k o n y x z y

u a n u u a n n
v a n v v a n n nR R R R R R
w a n w w a n n
h a v e h a v u n v n v n w n

 
 − + 
 − + − = =   − + − 
 − + − − 

 (3.12) 

 

[ ] 1 2 3 5 6

1 1 1 0 0
0

0(R-3):       
x x z

y y z

z z x y

o n k o n x z z y

u a n u u a n n
v a n v v a n nR R R R R R
w a n w w a n n n
h a v e h a v w n u n v n w n

 
 − + − 
 − + = =   − + − 
 − + − − 

 (3.13) 
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3.2.2  Left Eigenvectors 
 

The set of left eigenvectors can be determined from the inverse of the right eigenvector matrix, 1[ ] [ ]L R −= . 
For the first set of right eigenvectors (R-1), the matching set of left eigenvectors written in matrix format is, 

 

[ ]

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1

2

3

4

5

2 2 2 2 2

2

2 2 2 2 2

2 2 2 2 2

2

11 1 1 1
2 2 2 2 2

1 1 1 1 1

11 1 1 1
2 2 2 2 2

(L-1):            

yk n x z

k

yk n x z

n y y

x y

v a ne a v u a n w a n
a a a a a

a e u v w
a a a a a

v a ne a v u a n w a n
a a a a a

v v n n
n

L

L

L L

L

L
n

γγ γ γ γ

γ γ γ γ γ

γγ γ γ γ

− −− + − − − − −

− − − − − −

− +− − − + − + −

−

= =

 
 
 
 
 
 
   2

1

1

0

0

y z

x x

y zn z z

x x xz

n n
n n

n nv n w n
n n nn

−

−− −−

 
 
 
 
 
 
 
 
 
  

 (3.14) 

 
Being row vectors, the left eigenvectors are denoted by a left pointing half arrow. Each left eigenvector and 
corresponding eigenvalue satisfy the following matrix equation, and thus bear the name “left” eigenvector, 

 
 [ ]i i iL A Lλ=  (3.15) 

 
The above left eigenvector matrix becomes singular for nx = 0 , and simply multiplying the last two rows 
by nx  does not alleviate the problem; the matrix remains singular along certain directions, and a zero row 
vector emerges. It turns out that the inverse matrix of the second and third set of right eigenvectors, (R-2) 
and (R-3), yield a similar result, carrying the singularity in the ny  and nz  component, respectively, 

 

[ ]

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1

2

3

6

7

2 2 2 2 2

2

2 2 2 2 2

2 2 2 2 2

2

11 1 1 1
2 2 2 2 2

1 1 1 1 1

11 1 1 1
2 2 2 2 2

1

(L-2):            

yk n x z

k

yk n x z

n x x

y

v a ne a v u a n w a n
a a a a a

a e u v w
a a a a a

v a ne a v u a n w a n
a a a a a

v n u n
n

L

L

L L

L

L

γγ γ γ γ

γ γ γ γ γ

γγ γ γ γ

− −− + − − − − −

− − − − − −

− +− − − + − + −

− −

= =

 
 
 
 
 
 
   2 1

0

0

x z

y y

n z x z z

y y y

x

z

n n
n n

w v n n n n
n n n

n

n

−

− −

−

 
 
 
 
 
 
 
 
 
  

 (3.16) 

 

[ ]

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1

2

3

8

9

2 2 2 2 2

2

2 2 2 2 2

2 2 2 2 2

2

11 1 1 1
2 2 2 2 2

1 1 1 1 1

11 1 1 1
2 2 2 2 2

1

(L-3):            

yk n x z

k

yk n x z

n x x

z

v a ne a v u a n w a n
a a a a a

a e u v w
a a a a a

v a ne a v u a n w a n
a a a a a

u v n n
n

L

L

L L

L

L

γγ γ γ γ

γ γ γ γ γ

γγ γ γ γ

− −− + − − − − −

− − − − − −

− +− − − + − + −

− −

= =

 
 
 
 
 
 
   21

0

0

x y

z z

n y x y y

z z z

x

y

n n
n n

v n v n n n
n n n

n

n− − − −

 
 
 
 
 
 
 
 
 
  

 (3.17) 
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Depending on the direction of the unit normal vector, a singularity in the left eigenvectors can thus be 
avoided by choosing the appropriate matrix. To minimize numerical error during the computation, the 
largest component of the normal vector—measured by its absolute value—should always be located in the 
denominator. 
 
 
3.2.3  Eigensystem for 2-D Flow 
 

The transformation matrix and complete eigensystem for 2-dimensional flow can easily be derived from the 
more general 3-dimensional result by eliminating appropriate rows and columns within the matrices and 
simplifying the remainder by setting w nz= = 0 . For example, the transformation matrix [A] for 2-D flow 
is obtained after eliminating the fourth row and fourth column, and by redefining some of the quantities 
involved, 

 
 2 2ˆ  ,       1n x y x yv v n u n v n n n= ⋅ = + + =  (3.18) 

 
 ( )2 21

2ke u v= +  (3.19) 

 
The set of eigenvalues reduces to the first four, { , , , }i n n n nv a v v a vλ = − + , only one being repeated. 
Choosing the first set of eigenvectors, both left and right, the matrix of right eigenvectors for 2-D flow is 
obtained after eliminating the fourth row and fifth column from the general result, whereas the left 
eigenvector matrix is found by deleting the fifth row and fourth column from its original 5x5 matrix. It is 
interesting to note that after applying the above 2-D definitions, the singularities in the last row of the new 
4x4 left eigenvector matrix disappear! The first and third element of the fourth row can be simplified to, 

 

 
( ) ( )21x y xx y yn y

x y
x x x

v u n n v nv u n v n nv v n
v n u n

n n n
− − −− +−

= = = −  (3.20) 

 

 
2 21y x

x
x x

n n n
n n
− −= = −  (3.21) 

 
 

3.2.4  Interpretation of Results 
 

It was demonstrated earlier that two of the five right eigenvectors form a 2-dimensional subspace, within 
the general 5-dimensional space spanned by all right eigenvectors, and that every member of this subspace 
is itself an eigenvector. This phenomenon was attributed to the fact that their corresponding eigenvalues are 
repeated, which creates a “symmetry” within the eigenvector space. Although it may seem difficult to 
visualize any symmetry within a 5-dimensional vector space, part of this symmetry reveals itself when we 
geometrically interpret the 2-dimensional subspace as a plane. The eigenvectors R4 , R5 , and R6  shall now 
demonstrate this effect. Upon careful observation, they can be recast as shown in Equation (3.22), where 
tx , ty  and tz  are tangent vectors which all lie in the plane defined by the unit normal vector n ; their 
subscripts denote the vanishing component along the corresponding major axis, which can clearly be seen 
in Figure 3-1. Although all tangent vectors are depicted with equal length, they are not unit vectors and thus 
carry the standard vector symbol rather than the caret. Needless to say, the orthogonality relation holds 
between the tangent vectors and the surface unit normal, which is restated in Figure 3-1. 
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4 5 6

0 0 00 00
0

 ,          ,         0
0

y z

x y z xz

yx

y x y z yx z xz

n n
n t nR R R tt

nn
u n v n v t v n wnw n u n v tv t

         
          −        
     −    = = = = = =
         −        
        − ⋅ −− ⋅⋅          
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(3.22) 
 

It was shown earlier that R6  can be expressed as a linear combination of R4  and R5 . Geometrically, this 
implies that for each normal vector only two tangent vectors are needed to define the same plane. Any two 
tangent vectors rotated around the unit normal vector n̂  will result in another set of equally valid tangent 
vectors defining the same planar surface. The unit normal vector, being the axis of rotation, can thus be 
seen as the axis of symmetry for the vector space defined. 
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Figure 3-1: Eigenvector Subspace 
 
 

What has been omitted so far is the physical interpretation of the eigenvectors themselves. In simple terms, 
which way do the eigenvectors point? It was mentioned earlier that the different speeds at which waves 
travel through the flow field are determined by their eigenvalues. The direction of wave travel has already 
been specified by the unit vector n̂  normal to the surface under consideration—recall that we are trying to 
determine the magnitude of the mass, momentum, and energy flux across a given surface element. 
 
The Euler equations contain three types, or families of waves, one for every distinct eigenvalue. Each 
family of waves carries a different signal. The waves traveling at the speed of the flow ( nv ) are called 
entropy waves, their signal being entropy, whereas waves traveling at the speed of sound relative to the 
flow ( nv a± ) are called acoustic waves. Unfortunately, the signal carried by acoustic waves is not 
quantifiable in simple thermodynamic terms, but let us just say that they carry acoustic information. 
 
In essence, the eigenvectors point along the direction of the strongest signal. Any signal, whether physical 
or numerical in nature, is never completely noise free. In our case, numerical noise is introduced into the 
flow field through discretization error, as well as the accumulative effect of machine round-off error. 
However, one can minimize the noise and thus obtain the strongest possible signal through proper tuning. 
The eigenvectors are optimally tuned with respect to the flow and thus deliver the best signal-to-noise ratio 
when it comes to computing the fluxes across a surface element. 
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3.3  The Shock Tube Problem 
 

A benchmark test for inviscid flow solvers is the shock tube problem. A shock tube is a long thin tube, 
closed on both ends, with a membrane or diaphragm located around midsection, which separates two 
regions of stagnant gas at different pressures. Upon instantaneous removal of the separation membrane, the 
pressure imbalance creates a flow along the tube, which is characterized by three steadily moving waves: a 
shock wave, a contact discontinuity, and an expansion fan. Based on the instantaneous location of each 
wave, one can divide the general flow within a shock tube into five sections, which is illustrated below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-2: Shock Tube 
 
Section (1) contains the undisturbed gas of the low pressure or driven section. A shock wave propagates 
into section (1) at supersonic speed, based on the speed of sound of the undisturbed gas within section (1). 
Across the shock wave, the flow experiences a sharp rise in pressure and temperature, which remains 
uniform throughout section (2). Section (2) and (3) are separated by a contact discontinuity, which also 
travels toward the right, at the same speed as the local flow speed, which is uniform throughout both 
sections. The pressures within section (2) and (3) are equal and uniform, although there is a temperature 
drop and density rise across the contact discontinuity. The third wave within the shock tube is an expansion 
fan, which is marked by a continuous rise in pressure, temperature, and density. The expansion fan covers 
all of section (4); its width increases over time as the head and tail of the fan travel towards the left at 
different speeds, the head moving slightly faster than the tail. Section (5) contains the undisturbed gas of 
the high pressure or driver section. Although a diaphragm temperature ratio is generally included in the 
analysis of shock tube flow, it is assumed to be unity here. 
 
The shock tube problem is a classical problem in inviscid flow theory, because it clearly demonstrates the 
wave character of the underlying Euler equations. An analytical solution to the problem exists up to the 
point in time where either the shock wave or the head of the expansion is reflected by the respective end of 
the tube. The flow field resulting from multiple wave reflections, as well as the interaction of waves as they 
pass through each other when traveling in opposite directions can only be solved numerically. Although the 
flow discontinuities created by both contact and shock wave can easily be handled analytically, from a 
numerical viewpoint they can become rather challenging. Thus the development of suitable numerical 
algorithms for the shock tube problem has been a formidable task for decades. Three of the most popular 
algorithms—all based on the TVD principle—will be evaluated subsequently in comparison to the 
analytical solution, which is presented first. 

Shock Contact Tail Head 

(1) (2) (3) (5) Cu  Su  Tu  Hu  (4) 

Expansion Fan 

0t >  

Diaphragm 

High Pressure Gas Low Pressure Gas 0t =  
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3.3.1  Analytical Solution 
 

The analytical solution to the shock tube problem is based on inviscid flow theory and its derivation can be 
found in most textbooks on compressible flow [2]. Therefore, only the result shall be stated here, followed 
by a numerical example. According to Figure 3-2, the analytical solution for the flow within a shock tube is 
carried out from right to left, starting with the driven section. The first and major step towards the solution 
is to compute the pressure rise across the shock wave, which separates section (1) and (2), 
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The shock speed Su  is a function of shock pressure ratio and speed of sound of the driven section, 
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The ratio of sound speeds between the driver and driven section can be expressed in terms of temperatures, 
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Although the shock pressure ratio is completely specified by the initial conditions of diaphragm pressure 
and temperature ratios, its analytic expression is yet implicit. In order to carry out a numerical example, one 
has to solve the shock pressure ratio through an iterative method. This can be a cumbersome task, if the 
exponent in Equation (3.23) is not an integer and if the term within the brackets becomes negative during 
the iteration. For air, which has a ratio of specific heats of 1.4, the above exponent is indeed an integer (−7). 
Once the shock pressure ratio is computed, the shock speed is known, and thus the shock location can be 
determined. Based on the local coordinate system depicted in Figure 3-2, and assuming that the diaphragm 
was instantaneously removed at time 0t = , the shock location becomes a simple function of time, 

 
 ( )S D Sx t x u t= + ⋅  (3.26) 

 
The temperature rise and change in sound speeds across the shock can be expressed in terms of pressures, 
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The induced flow velocity behind the shock can be written in terms of pressure rise and shock speed, 
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The contact discontinuity travels with the mean flow, the velocity of which is constant throughout section 
(2) and (3). Thus, 
 2 3Cu u u= =  (3.29) 
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The location of the contact discontinuity is again a function of time similar to the shock wave location, 
 

 ( )C D Cx t x u t= + ⋅  (3.30) 
 

Although the pressure across the contact discontinuity remains unchanged, there is a rise in density and a 
drop in temperature. For a known pressure and speed of sound, the density of section (3) is obtained 
through the perfect gas equation, which can always be applied, 

 
 3 2p p=  (3.31) 
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The expansion fan of section (4) is marked through its head and tail, whose speed and location are, 

 
 3 3Tu u a= −  (3.34) 

 
 ( )T D Tx t x u t= + ⋅  (3.35) 

 
 5Hu a= −  (3.36) 

 
 ( )H D Hx t x u t= + ⋅  (3.37) 

 
Unlike the other sections, the flow speed and thermodynamic state within the expansion fan are not 
uniform, but are a continuous function of both space and time. For 0t > , 
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The flow properties of section (5), the undisturbed gas of the driver section, are known in terms of 
temperature and pressure through the initial conditions. Again, it should be emphasized that prior to the 
removal of the diaphragm the gases in both driver and driven section are stagnant. 
 
In order to demonstrate the above analytic solution, a numerical example has been calculated for a 
diaphragm pressure ratio of five and a temperature ratio of one. The results have been plotted for a shock 
tube of unit length at a non-dimensional time 0.25t = , where the speed of sound in the driven section is 
chosen to be one unit of length per one unit of time. All thermodynamic properties were non-
dimensionalized with respect to the initial properties of the driven section. Results are shown in Figure 3-3 
for Mach number, velocity, density, pressure, temperature, as well as entropy change. 
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Figure 3-3: Shock Tube Flow at Time 0.25t =  (Analytical Solution) 
 



 23 

 
 

 
 

Figure 3-3 Continued—(Analytical Solution) 
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Figure 3-3 Continued—(Analytical Solution) 
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The change in entropy is calculated relative to the entropy per unit mass initially present within the driven 
section and is non-dimensionalized by the constant volume specific heat coefficient, 
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It should come as no surprise that the entropy of the driver section is negative with respect to the driven 
section due to their initial pressure difference. Nonetheless, the total entropy present within the entire shock 
tube increases with time—after the diaphragm is removed—due to the irreversible losses that occur, and 
thus the second law of thermodynamics is always satisfied. 
 
The graphs presented in Figure 3-3 clearly demonstrate the jump discontinuities in flow properties across 
the shock wave and contact, which will be the main comparison feature for the numerical solutions 
presented in the next section. The contact discontinuity was referred to earlier as an entropy wave, and not 
surprisingly, the main entropy change within the shock tube does occur across the contact. The only other 
entropy change within the flow is seen across the shock wave, which is relatively small in comparison. 
 
An intrinsic feature of the graphs reveals itself in the different wave speeds at which the shock, contact, and 
expansion fan travel. Recall that the speed of sound within the driver and driven section is the same, and 
the non-dimensional scale is chosen such that a sonic wave advances 0.25 units of distance in 0.25 units of 
time. This is exactly the case for the expansion head, whereas the shock wave covers about 0.35 units of 
distance within the same time frame. Thus it can be seen from the plots that the head of the expansion fan 
travels at sonic speed towards the left, the shock wave propagates at supersonic speed towards the right, 
while both the contact wave and tail of the expansion fan travel at subsonic speed behind them. One should 
not confuse the speed of wave propagation with the local flow speed. As can clearly be seen in the Mach 
number plot, the local flow speed is subsonic everywhere. It should be noted though that the local Mach 
number is based on the local speed of sound, which changes with temperature. For higher diaphragm 
pressure ratios, such as 5 1 15p p = , the flow speed behind the shock wave may become supersonic. 

 
 
3.3.2  Numerical Solution 
 

The numerical solutions to the shock tube problem are all derived from the one-dimensional Euler 
equations and their eigensystem, which comprises a much simpler subset of the equations presented earlier. 
Written in compact column format, the governing conservation equations are, 
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where, 
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The stagnation energy and enthalpy per unit mass are somewhat simplified, inasmuch as their kinetic part is 
reduced by two components, 
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Once more, static energy, enthalpy, and pressure can all be expressed in terms of the local speed of sound, 
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The eigensystem of the above conservation equations is equally simplified compared to the original system. 
Since we are left with only three conservation equations, we only get three eigenvalues, which are distinct, 

 
 { , , }i u a u u aλ = − +  (3.45) 

 
The matrices of right and left eigenvectors reduce to 3x3 in size, and since they no longer carry any 
directional singularity, a single set suffices, 
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One might be tempted to multiply the matrix of left eigenvectors by 2a  in order to eliminate the 
denominator. After all, any eigenvector can be multiplied by a constant without changing its direction, and 
since we are working in a functional space, the speed of sound, which varies locally, is still considered to 
be a constant. However, such simplification would be ill advised, since the resulting eigenvector matrices 
would no longer satisfy the matrix equation that is intrinsically used within the algorithm, 

 
 [ ] [ ] [ ]L R I=  (3.48) 

 
The system of integral conservation equations of (3.42) are solved numerically by slicing the shock tube 
into a finite number of control volumes as shown in Figure 3-4. The number of these finite volume elements 
determines the resolution of the computed flow field and should be quite large ( 100N > ). Based on the 
premise that flow properties within each volume element are constant, the system of integral conservation 
equations can then be rewritten in algebraic or discrete form. For example, a central discretization scheme, 
where the fluxes between elements are computed as simple arithmetic averages, would look as follows, 
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Figure 3-4: Finite Volume Model 

 
The superscripts in Equation (3.49) denote subsequent time levels. Consistent with the original integral 
formulation, the fluxes are multiplied by the area of the cell faces they travel across. The discretization 
shown in Figure 3-4 is uniform, consisting of equally spaced elements of constant volume and constant area 

cell faces. Therefore, Equation (3.49) could be simplified by setting, ( )3
iV x∆ = ∆ , and ( )2

iA x∆ = ∆ , for 

constantix∆ = , however it was decided for expository purposes to leave the finite volume formulation in 
its more general form. The flux vectors shown in Figure 3-4 both point to the right, and thus are both 
positive, since the positive x-direction is towards the right. Depending on the local flow, of course, the sign 
of the flux vectors can change, and thus fluxes can travel in either direction. 
 
The discretization carried out in Equation (3.49) is simple and straightforward and would work well if 
applied to a viscous flow model at very low Reynolds number, which contains plenty of dissipation. In the 
absence of dissipative mechanisms, which is the case for inviscid flow, numerical discretization errors 
would grow quickly and render the computation unstable. Thus the above discretization scheme would fail 
if applied to shock tube flow. However, by adding a small amount of corrective flux to Equation (3.49), the 
scheme can be turned into a stable and well-behaved TVD scheme: 
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The additional flux terms 1/ 2i±f  shall be referred to as eigenfluxes, since they are intimately tied to the 

eigenvalues and eigenvectors of the Euler equations. Denoting the matrix of right eigenvectors by R , 
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where 

 ( )1/ 2 1/ 2 1/ 2 1
1( ) ,          
2

p p p
i i i i iR R Q Q Q Q+ + + += = +  (3.52) 

 

The construction of the vector b  involves the eigenvalues and left eigenvectors of the local flow, a local 
length scale, as well as the global integration time step. Its exact assembly depends on the specific TVD 
scheme employed, three of which are presented in the following subsections. The numerical 
implementation of the initial and boundary conditions is independent of the flow solver. For a shock tube 
that is equally divided into driver and driven section, the initial condition is expressed as follows, 
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The reflection boundary condition at the end walls is implemented through ghost cells, which lie outside 
the physical domain and mirror the flow properties of the interior, 
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3.3.2.1  ROE Scheme 
 

The ROE scheme was discovered in 1981 by Philip Roe [15] and is commonly referred to in the literature 
as Roe’s first-order upwind method for the Euler equations. Although it inherits most of the TVD 
properties, it is not considered a TVD scheme per se for two reasons: (1) its spatial accuracy is only of first 
order, whereas true TVD schemes are generally second-order accurate; (2) its entropy law is not properly 
enforced near sonic points, and as a result expansion shocks can form at sonic points within expansion fans. 
According to Roe, the vector b  is formed as follows, 
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In the above, L  denotes the matrix of left eigenvectors, where λ  are the eigenvalues written in vector 
format. The local length scale incorporated into the scalar τ  represents the distance between cell centers. 
In Roe’s original formulation, all flow quantities evaluated at cell faces were mass averaged, which is 
computationally more expensive. The arithmetic averaging employed here yields equally valid results and 
is much simpler. 
 
The computational results for the shock tube problem, based on the ROE scheme, are presented over the 
next several pages using both profile plots and wave diagrams. A wave diagram is essentially a collection 
of profile plots for subsequent time levels in form of a contour map. The non-dimensionalization is 
identical to the analytical solution presented earlier, such that all profile plots can directly be compared. 
The graphs of Figure 3-5 are generally in good agreement with the analytical results shown in Figure 3-3. 
The changes in flow properties across the shock wave and contact discontinuity are no longer pure jumps, 
but are spread over several points. The contact is considerably more smeared than the shock, although both 
waves are clearly recognizable. The edges of all wave fronts, including the expansion fan, are significantly 
softened due to the action of numerical viscosity, which is characteristic of any first-order accurate scheme. 
The wave diagrams of Figure 3-6 further reveal the strong presence of numerical viscosity, particularly at 
later times when the reflected waves interact with each other. 
 
Numerical, or artificial, viscosity is introduced in the discretization process and cannot be avoided. 
Although it causes diffusion, which is seen in the smearing effect it has on discontinuities, numerical 
viscosity is needed to some degree in order to enforce the entropy law. Recall that the Euler equations have 
been stripped of physical viscosity, the mechanism which guarantees that the overall entropy of a flow can 
only increase in time. It can be demonstrated [11] that the numerical viscosity present in the ROE scheme is 
simply ε = l . At sonic points, the first eigenvalue goes to zero, 1 0u aλ = − = , and thus the numerical 

viscosity in the first equation of eigenvectors vanishes. With no other entropy enforcing mechanism 
present, a physically incorrect expansion shock may develop in a numerical solution. This phenomenon can 
be observed when solving shock tube flow for diaphragm pressure ratios of around twenty, using the 
original ROE scheme. To overcome the inadequacy of Roe’s algorithm near sonic points, Ami Harten [7] 
proposed a simple entropy fix by introducing the following numerical viscosity function, 
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Applied to Roe’s scheme, 

 

 1/ 2 1/ 2 1/ 2Viscos( )i i i+ + +=b l a  (3.59) 

 
the numerical viscosity is now always positive, 

 
 Viscos( )ε ε= ≥l  (3.60) 

 
When solving shock tube flow using the modified ROE scheme, the expansion shock disappears by setting 

0.1ε = , which is commonly referred to as the numerical viscosity parameter, a non-dimensional quantity. 
In our computations, the diaphragm pressure ratio was low enough such that the flow within the expansion 
fan is subsonic everywhere. Therefore, a numerical viscosity parameter was not needed, and by setting 

0ε =  it is implied that the absolute value function is used. 



 30 

 
 

 
 

Figure 3-5: Shock Tube Flow at Time 0.25t =  (ROE Solution) 
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Figure 3-5 Continued—(ROE Solution) 
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Figure 3-5 Continued—(ROE Solution) 
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Figure 3-6: Shock Tube Flow – Wave Diagram  (ROE Solution) 
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Figure 3-6 Continued—(ROE Solution) 
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Figure 3-6 Continued—(ROE Solution) 
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3.3.2.2  TVD Scheme 
 

In 1982, Ami Harten published a groundbreaking paper [7] that became the basis of CFD research for many 
years to come. Under the title “High Resolution Schemes for Hyperbolic Conservation Laws”, Harten 
introduced the term total variation non-increasing (TVNI), which was later shortened by other researchers 
to total variation diminishing (TVD). In essence, Harten was able to combine the stability of first-order 
schemes with the accuracy of second-order algorithms, without introducing their negative side effects of 
numerical diffusion and dispersion. The dispersive character of second-order algorithms causes spurious 
oscillations in the neighborhood of flow discontinuities such as shocks, a truly undesirable feature. Harten’s 
paper, which is developed in the most rigorous mathematical fashion, includes the derivation of every 
result, which shall not be repeated here. Instead, only the numerical algorithm will be stated, followed by a 
brief explanation of its rationale. According to Harten’s ULT1 scheme, renamed here as the TVD scheme, 
the vector b  is formed as follows, 

 
 ( )1/ 2 1/ 2 1/ 2 1/ 2 1Viscos( )i i i i i i+ + + + += + − +b l m a u u  (3.61) 

 
with l and a  as previously defined in Equations (3.56) and (3.57). The flux correction u  and numerical 
viscosity modification m  are calculated in the following manner, 
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where, 
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1/ 2 1/ 2 1/ 2 1/ 22 Viscos( ) ( )i i i i+ + + += −w l l a  (3.64) 
 

and, 
 [ ]Minmod( , ) max 0, min( , )x y x y=  (3.65) 

 
The Minmod function acts as a flux limiter to the flux correction u ; whenever the function returns a zero 
value, both u  and m  vanish, and Equation (3.61) reduces to the modified ROE scheme of Equation (3.59). 
Such is the case at points of local extrema within the flow, where the overall accuracy of the scheme is only 
first-order. Shocks and contact discontinuities are also treated by the TVD algorithm as if they were 
extrema. At points away from local extrema and discontinuities, the Minmod function allows either a linear 
or limited amount of flux correction, which renders the overall scheme second-order accurate in space. The 
flux correction u  is essentially a dispersive flux, which counteracts the diffusive flux of the underlying 
first-order scheme. Adding too much dispersive flux, however, could introduce oscillations into the flow 
field, which is prevented through the limitation imposed by the Minmod function. 
 
The concept of a flux limiter can be better understood by rewriting the Minmod function in a slightly 
different form, which is known in neural networks as the threshold linear signal function [9, 21], 

 
 ( ) Minmod(1, ) ,       where   r r r y x= =L  (3.66) 
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The input signal r represents the ratio of neighboring gradients within a flow field, and its output signal 
determines the amount of dispersive flux that is sent depending on this ratio. As can be seen in Figure 3-7, 
the output signal is a piecewise linear function, which can be divided into three intervals: (1) If the ratio of 
consecutive gradients is negative, the flow field is undergoing a local maximum or minimum. The 
dispersive flux is zero, and the resulting scheme is first-order upwind. (2) If the ratio of gradients is 
between zero and one, their magnitude is increasing (they can both be negative), which means the flow 
field steepens. The dispersive flux is linear, and the resulting scheme is second-order upwind. (3) If the 
ratio of gradients is greater than one, their magnitude is decreasing, which means the flow field flattens. 
The dispersive flux is limited, and the overall scheme becomes second-order central. In summary, the TVD 
scheme is second-order accurate in space except at local extrema, where the accuracy reduces to first order. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-7: Flux Limiter Function 
 
 
The computational results for the shock tube problem, based on the TVD scheme, are presented over the 
next pages in Figures 3-8 and 3-9. The non-dimensional scale of all profile plots and wave diagrams is 
again identical to the solutions presented earlier, such that an immediate comparison can be made. Overall, 
the profile plots for the TVD scheme are very similar to the ones computed by the ROE scheme. The wave 
fronts in each plot are somewhat sharper in comparison, yet there is no noticeable difference in the shock 
resolution between the two numerical schemes. The contact discontinuity is slightly steeper in the TVD 
profile plots, but there is still room for enhancement. The main improvement of the TVD scheme over the 
ROE scheme can be seen in the wave diagrams. The chevron patterns produced by the reflected waves are 
definitely crisper than they were before. Most striking is the time evolution of the contact wave when 
followed on the entropy wave diagram. In the ROE computation, the entropy wave became considerably 
smeared over time, which was attributed to the ubiquitous numerical viscosity of the first-order scheme. In 
the TVD computation, the contact discontinuity stays intact over a much longer time period, even after the 
reflected shock has traveled through the contact. 
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Figure 3-8: Shock Tube Flow at Time 0.25t =  (TVD Solution) 
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Figure 3-8 Continued—(TVD Solution) 
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Figure 3-8 Continued—(TVD Solution) 
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Figure 3-9: Shock Tube Flow – Wave Diagram  (TVD Solution) 
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Figure 3-9 Continued—(TVD Solution) 
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Figure 3-9 Continued—(TVD Solution) 
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3.3.2.3  ULT Scheme 
 

The ULT scheme is more or less an extension of the TVD scheme presented in the last section and is 
mainly geared towards the preservation of the contact discontinuity. In Harten’s original paper [7], the 
algorithm was presented as a variation to the ULT1 scheme. He labeled it ULT1C, the C standing for 
compressive, however the name adopted here shall simply be ULT, short for the ultimate TVD algorithm. 
TVD schemes come in different “flavors” depending on the exact form of the flux correction employed. 
Since only the two most popular schemes are of interest to us, the abbreviations TVD and ULT were 
chosen instead of ULT1 and ULT1C for ease of reference. Similar to the previous TVD scheme, the vector 
b  is formed as follows, 

 
 ( )1/ 2 1/ 2 1/ 2 1/ 2 1Viscos( )i i i i i i+ + + + += + − +b l n a g g  (3.67) 

 
again with l and a  as previously defined in Equations (3.56) and (3.57). The new flux correction g  and 
numerical viscosity modification n  are calculated in the following manner, 
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 i i i i= +g u c v  (3.69) 
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and, 
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 ( )1

1/ 2 1/ 22 1 Viscos( )i i+ += −s l  (3.72) 

 
The vector u  is defined as before in Equations (3.63) and (3.64). The vector c  denotes the artificial 
compression introduced into the algorithm. Note that by setting c  equal to zero, i.e., using no artificial 
compression, the above algorithm is identical to the TVD scheme presented in the last section. 
 
As before, the derivation of the algorithm shall be referred to Harten’s paper [7], yet a few remarks will be 
made regarding its underlying rationale. Recall that the Euler equations carry three families of waves, each 
family traveling at a characteristic speed defined by its eigenvalue. Accordingly, an inviscid flow field can 
be divided into different characteristic fields, depending on the type of wave family dominant in the flow. 
Characteristic fields are recognized in wave diagrams by their characteristic lines, along which the wave 
speed ( dx dt ) is constant. Graphically, characteristic lines separate the different colors in a wave diagram. 
Needless to say, the number of characteristic lines seen in a wave diagram depends on the size of the color 
palette being used, which is why we only talk about families of waves. Also, depending on the flow 
property being plotted, not all wave families can be identified at once. For example in a wave diagram 
showing either velocity or pressure, a contact or entropy wave is nowhere to be found. 
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Figure 3-10: Shock Tube Flow at Time 0.25t =  (ULT Solution) 
 



 46 

 
 

 
 

Figure 3-10 Continued—(ULT Solution) 
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Figure 3-10 Continued—(ULT Solution) 
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Figure 3-11: Shock Tube Flow – Wave Diagram  (ULT Solution) 
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Figure 3-11 Continued—(ULT Solution) 
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Figure 3-11 Continued—(ULT Solution) 
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For shocks, the characteristics dx dt u a= +  all coalesce into a single line, whereas for expansion fans, the 
characteristics dx dt u a= −  fan out between the head and the tail of the expansion. More generally, the 
characteristic lines of compression waves are convergent, whereas for rarefaction waves they are divergent. 
For contact discontinuities, which travel with the flow, the nearby characteristics dx dt u=  are parallel. 
Even a slight numerical divergence of the characteristic lines near a contact, induced by a small amount of 
artificial viscosity, will result in considerable loss of resolution or smearing. On the other hand, a slight 
convergence of these characteristics, induced by an evenly small amount of artificial compression, will 
preserve a contact discontinuity almost indefinitely. Such is the rationale of the ULT scheme. 
 
Although artificial compression is applied throughout the flow field, it is yet so small that its effect on 
shock and expansion fan can hardly be detected. Upon closer inspections of the computed results for the 
ULT scheme, presented in Figures 3-10 and 3-11 over the last pages, one will notice a minimal overshoot 
near the contact and around the head of the expansion fan. This effect was not seen before, and can thus be 
directly attributed to the artificial compression introduced into the algorithm. One should further notice that 
the scale on some of the graphs, which is dependent on the global range of variables for all times, has 
slightly increased. Recall that the scale in both the ROE and the TVD solution was identical to the scale of 
the analytical solution. So there is a bit of a trade-off when using artificial compression. The wave fronts 
are much better defined in the ULT scheme than they were before, at the same time the range of variables is 
no longer exact due to some of the overshoots. 
 
When comparing the different wave diagrams of all three schemes (ROE, TVD and ULT) one can clearly 
observe that the artificial compression of the ULT algorithm has lent its graphs an extraordinary crispness. 
There is no noticeable deterioration in the contact discontinuity, not even after the shock wave has reflected 
and traveled through the contact, although a few entropy ripples can be seen in the reflected portion of the 
wave diagram, which should not be present. Overall, the ULT algorithm appears indeed as the ultimate 
numerical scheme for solving the shock tube problem. 
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4.  SOLUTION DETAIL 
 
The full Navier Stokes (FNS) equations, originally presented in Section 2.2, were completely disassembled 
in Chapter 3 in order to demonstrate the solution methodology. After eliminating the viscous terms from 
the full set of conservation equations, an eigensystem analysis was carried out on the remaining Euler 
equations for 3-D inviscid flow. The wave character of the Euler equations was demonstrated, and the TVD 
concept was applied to the 1-D inviscid subset, the governing equations for shock tube flow. After taking 
the FNS equations apart and studying their underlying structure, we are now ready to reassemble them in 
order to solve the actual problem, the flow over a rotating disc in forward flight. 
 
 
 
4.1  Equations for Viscous Flow (FNS) 
 

The conservation equations for viscous flow, which are commonly referred to as the Navier Stokes 
equations, were introduced in Section 2.2 in a coordinate independent format, using a general notation of 
vectors and tensors. Based on a fixed Cartesian frame of reference, we shall now rewrite the FNS equations 
in the same column type format that was used in Section 3.1 for the Euler equations. Again, each column 
represents the full set of conserved properties—mass, momentum, and energy, 
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The velocity across a cell boundary is again defined as the dot product of local velocity vector and outward 
unit normal vector to the boundary, 

 
 2 2 2ˆ  ,       1n x y z x y zv v n u n v n wn n n n= ⋅ = + + + + =  (4.2) 

 
The stagnation energy and enthalpy per unit mass are the sum of static and dynamic parts, respectively, 

 
  ,      o k o ke e e h h e= + = +   

(4.3) 
 ( )2 2 21

2ke u v w= + +   
 

where ke  is the kinetic energy per unit mass. Static energy, enthalpy, and pressure shall now be expressed 
in terms of temperature, 

 
  ,       ,      v pe c T h c T p RTρ= = =  (4.4) 
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The energy flux ne  across a cell boundary, which is due to heat exchange as well the work done by the 
viscous stress tensor, is defined as follows, 

 

 ( ) ˆne v q nτ= ⋅ − ⋅  (4.5) 

where, 
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 (4.6) 

 
The force vector f , which appears in the momentum equation, is the dot product of the stress tensor σ  
and the outward unit normal to the surface, 
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The components of the viscous stress tensor τ , based on a Cartesian frame of reference, are determined 
through local velocity gradients, 
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 (4.9) 

 
Similarly, the components of the heat flux vector q  are determined through local temperature gradients 
according to Fourier’s law of heat conduction, 

 

  ,         ,        x y z
T T Tq q q
x y z

κ κ κ∂ ∂ ∂= − = − = −
∂ ∂ ∂

 (4.10) 

 
The local gradients of velocity and temperature are difficult to calculate unless the finite volume mesh is 
Cartesian. Determining the above partial derivatives on a curvilinear mesh is anything but a trivial task. 
One may attempt to come up with an interpolation algorithm, which realigns all flow properties with the 
major axes. Although such algorithms exist, which are widely used in flow visualization, there are more 
elegant ways of computing the gradients. The standard method is based on a mathematical transformation 
from local to global coordinates, which will be presented over the next sections. 



 55 

4.2  Curvilinear Coordinate System 
 

Before we introduce the mathematics of coordinate transformations, we shall first define the curvilinear 
coordinate system employed on our finite volume mesh. Recall from Figure 2-2 that the construction of the 
finite volume mesh becomes almost spherical as one moves further away from the surface of the ellipsoid. 
Therefore, the natural way of indexing the cells within the mesh is through an adaptation of the spherical 
coordinate system. Similar to longitude, latitude, and altitude around a globe, the cells around the ellipsoid 
are numbered according to their radial (I), polar (J), and circumferential (K) position, which is shown in 
Figure 4-1. Index i runs from the surface of the ellipsoid to the outer spherical boundary. Index j traverses 
180 degrees from “north pole” to “south pole”. And index k sweeps 360 degrees counter-clockwise around 
the polar axis, when viewed from above, starting just to the left of the “date line” and ending to its right. 
 
We shall distinguish between local (I, J, K) and global (x, y, z) coordinate systems. The global Cartesian 
coordinate system is fixed in space; its axes originate at the center of the ellipsoid, and they are orthogonal 
with respect to each other. The axes of the local coordinate system, however, are nearly orthogonal at most, 
and being located at the center of each cell—defined here to be the average of its corner points—their 
direction changes from one cell to another. Note that both local and global coordinate systems are right-
handed, meaning that each set of axes can be visualized by thumb, index, and middle finger of the right 
hand. The right-handedness property is important for the metrics of the coordinate transformation. 
Although the indices (i, j, k) are discrete integers, the coordinates (I, J, K) are continuous, and at cell 
centers their values coincide (I = i, J = j, K = k). Therefore, the distance between adjacent cell centers 
measured along the local axes is always unity by construction. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-1: Local and Global Coordinate System 
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4.3  Coordinate Transformation 
 

For the curvilinear coordinate system shown in Figure 4-1, each set of local coordinates (I, J, K) can be 
expressed as a function of global coordinates (x, y, z), which is known as the transformation, 

 
 ( , , ) ,        ( , , ) ,        ( , , )I I x y z J J x y z K K x y z= = =  (4.11) 

 
Using the chain rule of partial differentiation, the partial derivatives based on the fixed reference frame are, 
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are known as the metrics of the transformation; we can write them in packets of three, using the gradient 
operator, 
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These gradient vectors can be directly related to familiar finite volume terms, a heuristic result, which will 
become apparent over the next sections, 
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To apply Equations (4.12) and (4.13), we shall write out the finite difference expression for the temperature 
gradient along the x direction at a cell center. By definition, 1I J K∆ = ∆ = ∆ = , which simplifies the terms, 
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 (4.16) 

 
Since the gradients at all six faces of the volume element are averaged equally, the above formula is 
centrally differenced, and its accuracy is second order. The temperature gradients along the y and z 
direction are computed analogously, by using the respective metrics. 
 
One may wonder about the applicability of Equation (4.16) near the poles. After all, the polar axis is a 
mathematical singularity, which makes it difficult to define gradients. Consistent with our mathematical 
formulation, we shall approach this problem from a finite volume point of view. One can view the polar 
axis as a stack of cells that have all collapsed into a single line as their volume has shrunk to zero. 
Accordingly, the area of their cell faces is also zero, which implies that no flux can leave or enter them. 
This only makes sense, because a cell of zero volume would not be able to store anything anyway. Thus if 
no energy can be stored inside a collapsed polar cell, no heat flux can enter it, and therefore the 
temperature gradient towards the polar axis must vanish. This does not imply that we cannot have different 
temperatures at opposite sides of the pole; it only means that according to our finite volume model there is 
no direct heat exchange between such cells. Any heat exchange between two cells on opposite sides of the 
polar axis must travel around the axis, traversing all intermediate cells along the circumferential direction. 
By assigning zero volume and zero face area to these imaginary polar cells, we shall now demonstrate that 
Equation (4.16) is valid throughout the computational domain. For max1,...,j J=  on the interior, 
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which yields, 
 

max,1/ 2, , 1/ 2,0 ,        0i k i J kJ J +∇ = ∇ =  (4.18) 

 
according to Equation (4.15). When substituting this result into Equation (4.16), the temperature gradient 
into the pole does indeed vanish. Therefore, Equation (4.16) is applicable near the poles. It is needless to 
say that finite difference expressions for velocity gradients can be derived similar to Equation (4.16), which 
would also be valid throughout the computational domain, including near the poles. The above discussion 
was limited to temperature gradients and heat flux, which is physically more intuitive than velocity 
gradients and divergence. 
 
Next to the poles, the circumferential cut or “date line” is another area of concern when taking derivatives 
or evaluating fluxes. The index k starts and ends with the dateline, running from max1,...,k K= . Whenever 

1k =  and a difference equation addresses a quantity labeled with 1l k= − , the computer program has to 
automatically fetch the quantity on the other side of the cut by replacing the address with maxl K= . 
Likewise, whenever maxk K= , an address 1m k= +  must be replaced with 1m = . 
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4.4  Finite Volume Approximation 
 

In Equation (4.15) the transformation metrics were related to the more physical finite volume terms. 
Although the 2-D analogue to this equation is always exact, the 3-D version presented here is only a good 
approximation, largely depending on how the terms on either side of the equation are calculated and on the 
degree of distortion of each hexahedral element within the mesh. As seen in Figure 4-2, a hexahedron 
carries six faces (thus the name) and can be compared to a distorted cube, similar to a cardboard box that 
has somehow been bent out of shape. Depending on the level of distortion, none of the six faces may be 
planar. In other words, each face may experience some degree of curvature. Try to imagine an out-of-shape 
cardboard box that would not sit level on an even floor, and which could be rocked slightly back and forth. 
Since the area of a hexahedral face cannot be exactly defined, neither can its volume, which explains why 
Equation (4.15) is just a numerical approximation of terms and not an exact relation. 
 
The approach taken here, in approximating the volume and face areas of a hexahedral cell, is graphically 
outlined in Figure 4-2. For simplicity, the local coordinate system was attached to the lower corner of the 
hexahedron instead of its center. Although this is inconsistent with our usual description of terms, the half-
indexing was avoided for the sake of clarity. Based on the eight corner points of the hexahedron, which are 
defined in Cartesian coordinates via C , the face areas are computed by diagonally spanning vectors across 
each face and taking their cross product. The magnitude of the resulting vector cross product yields twice 
the projected surface area; the direction of vector S  is normal to the plane of projection, pointing inward. 
One may ask, how the area is projected. Whenever there is curvature present within a face, the vectors 
spanning diagonal corners do not intersect. By shifting these vectors in space such that they do intersect 
diagonally, one moves them into a common plane, which is the plane of projection. 
 
Notice that we only have to calculate the surface area to three orthogonal faces—nearly orthogonal to be 
precise—for each hexahedral cell. The remaining face areas are calculated via neighboring cells, as one 
sweeps the entire mesh along radial, polar, and circumferential direction. For this reason, it was decided to 
have all surface vectors point along the direction of the local coordinate system. After all, an inward normal 
to one cell is an outward normal to its neighboring cell. 
 
The volume of the hexahedron is obtained by slicing it into three pyramids, such that the base of each 
pyramid coincides with one of the faces for which the surface area has already been calculated. It can be 
seen in Figure 4-1 that all three pyramids share a common edge, spanned by the H vector, which points to 
the tip of each pyramid. By dotting the H and S  vectors, one obtains the product of base area and height 
of each pyramid, which is three times its volume. The volume of the entire hexahedron is simply the sum of 
all pyramid volumes. Mathematically, this is equivalent to adding the base vectors first and then dotting 
them collectively with one-third of the “height” vector, which is the formula presented in Figure 4-2. 
Again, it should be emphasized that the volume computed is only an approximation based on the projected 
faces of the hexahedron. 
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An accuracy check of the volume approximation formula was carried out by computing the volume of the 
entire 60x40x80 mesh and comparing it to its “exact” value, the physical space occupied between the outer 
sphere and the inner ellipsoid. Although the error is only 0.257% with respect to the entire volume, it is 
equivalent to more than five times the volume of the ellipsoid. 
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Figure 4-2: Volume of Hexahedron 
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4.5  Discretization Scheme 
 

The numerical discretization of the 3-D Navier Stokes equations is simply an extension to the discretization 
of the 1-D Euler equations presented in Section 3.3.2. We are now summing fluxes over six faces instead of 
two, and each term in the discretized equation is identified via three indices instead of one. Using first-
order accurate explicit time marching as before, the discretized set of viscous conservation equations is, 
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where, 
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The flow vector Q  and flux vector F  were defined in Section 4.1, including all of their intrinsic terms. 
The evaluation of fluxes at cell interfaces along the polar (J) and circumferential (K) directions is carried 
out analogously. The discretization of the heat flux vector and viscous stress tensor inherent in F  has 
already been demonstrated in Section 4.3 and shall not be repeated here. The eigenfluxes f  are now based 
on the eigensystem of the 3-D Euler equations derived in Section 3.2. The 5x5 matrices of left and right 
eigenvectors used below are chosen from the set { }(L-1), (L-2), (L-3)  and { }(R-1), (R-2), (R-3) each, 
depending on the direction of the unit normal vector to the cell face, 

 
 1/ 2, , 1/ 2, , 1/ 2, ,i j k i j k i j kR+ + += ⋅f b  (4.21) 
where, 

 ( )1/ 2, , 1/ 2, , 1/ 2, , , , 1, ,
1( ) ,          
2

p p p p
i j k i j k i j k i j k i j kR R Q Q Q Q+ + + += = +  (4.22) 

 
The formation of the vector b  shall be presented according to the modified ROE scheme, which uses the 
entropy fix of the numerical viscosity function that was defined in Equation (3.58). It has been 
demonstrated in Section 3.3.2 that the TVD and ULT scheme are merely an extension to the ROE scheme. 
For general 3-D flow, the discretized equations for the TVD and ULT scheme are identical to the ones 
presented in Section 3.3.2 except for the additional two indices in the subscript. According to the modified 
ROE scheme, 

 
 1/ 2, , 1/ 2, , 1/ 2, ,Viscos( )i j k i j k i j k+ + +=b l a  (4.23) 

 
where, 
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and, 
 1/ 2, , 1/ 2, , 1/ 2, ,i j k i j k i j kλ τ+ + +=l  (4.25) 
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4.5.1  Boundary Conditions 
 

The discretized Navier Stokes equations only describe the numerical relation between flow properties of 
adjacent volume elements. What drives the flow and sets one flow solution apart from another are the 
boundary conditions. By taking a second look at Figure 4-1, the depiction of local and global coordinate 
systems, we can identify three mathematical and two physical boundaries. The mathematical boundaries are 
the north pole, south pole, and date line, which have already been addressed in Section 4.3 as part of the 
coordinate transformation. No special flow properties are assigned at any of the mathematical boundaries. 
The two physical boundaries are the surface of the ellipsoid as well as the far field or outer boundary, the 
latter being represented by an imaginary sphere. In reality, the outer boundary is at infinity, but for all 
practical purposes we have to set it at a finite distance. The outer boundary should be far enough away from 
the ellipsoid such that its shape, which is arbitrary, does not influence the flow field solution. Thus we 
could have chosen a large rectangular box instead of a sphere, however, this would have unnecessarily 
complicated our meshing. 
 
 
 
4.5.1.1  Surface Boundary 
 

In Section 2.2, the surface boundary condition was expressed in two parts, a no-slip condition for the 
velocity components and a no-flux condition for the energy exchange. Although these are both necessary 
conditions for adiabatic viscous flow, they are not sufficient, neither from a physical nor from a 
computational viewpoint. Recall that we have a system of five integral equations solving for five 
unknowns, three velocity components and two thermodynamic state variables. The no-slip condition 
specifies the three velocity components, whereas the no-flux condition indirectly determines the 
temperature at the surface by requiring that its gradient is zero. So far, we have only four boundary 
conditions. To complete the set, we need one more, which specifies another thermodynamic state variable, 
either directly or indirectly. 
 
We saw in Section 3.3.2 how the boundary conditions for shock tube flow were implemented through ghost 
cells, imaginary cells outside the physical domain, which reflected the flow conditions of the interior. The 
reflection boundary condition prescribed at the end walls of the shock tube was stated in Equation (3.54), 
which essentially maps the interior flow properties into the ghost cells and reverses the momentum by 
putting a minus sign in front of it. Note that reversing the momentum does not change the kinetic energy, 
and by setting the mass and energy equal on both sides of the wall boundary, Equation (3.54) indirectly 
implies that the temperature and density gradients are both zero at the wall. A zero temperature gradient is 
consistent with the adiabatic wall condition, but what about the density gradient? It turns out that in one-
dimensional inviscid flow the pressure gradient vanishes at any wall, a result that can be derived directly 
from the momentum equation. As a consequence, the density gradient must also vanish, which can be seen 
by differentiating the equation of state for a perfect gas with respect to a direction normal to the wall, 
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 1 1p T
n p n T n
ρ ρ  ∂ ∂ ∂= − ∂ ∂ ∂ 

 (4.26) 

 
In multidimensional flow, things are not quite as simple! Although the temperature gradient can always be 
forced to zero through an adiabatic condition, the pressure gradient at the surface is a direct function of the 
centrifugal force felt by a fluid particle. A centrifugal force field is present whenever fluid particles travel 
along a curved path, which is almost always the case in multi-dimensional flow. In addition, a centrifugal 
force field can become particularly strong when the surface itself is rotating, which accelerates fluid 
particles radially outward. Such is the case in our flow simulation, and therefore the pressure, or density 
gradient cannot be neglected in the surface boundary formulation. On the contrary, an expression for the 
surface density gradient serves as a fifth boundary condition, which is needed to close the set. 
 
Although an approximate analytical expression for the surface density gradient can be derived, whether or 
not the body is rotating, it is just as accurate to simply measure the density gradient above the surface and 
use this value when extrapolating into the ghost cell. By doing so, we are essentially setting the gradient of 
the gradient equal to zero, which is equivalent to saying that the second partial derivative of density with 
respect to the surface must vanish. Together with the adiabatic surface condition we can thus write, 

 

 
2

2 0 ,         0T
n n
ρ∂ ∂= =

∂ ∂
 (4.27) 

 
Strictly speaking, the numerical evaluation of any derivative should be based on the full set of metrics as 
stated in Equation (4.16). However, since the hexahedral cells near the surface are highly compressed along 
the radial direction, one can neglect the density and temperature variations along the polar and 
circumferential directions, even if the radial direction is not normal to the surface as depicted in Figure 4-3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-3: Surface Boundary 

(0, , )j k

(1, , )j k

(2, , )j k  

1/ 2i =  

3 / 2i =  

5 / 2i =  

1/ 2, ,j kn∆  

3/ 2, ,j kn∆  

Ghost Cell 

Flow Cells 



 63 

Therefore, the temperature gradient at the surface may be approximated as follows, 
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which yields, 
 

 0, , 1, ,j k j kT T=  (4.29) 

 
The difference n∆  is the separation distance between cell centers measured along the interface normal, 
which is equal to the reciprocal magnitude of the metrics vector defined in Equation (4.15), 
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The variation of the face normal is minimal between the surface and the cell face just above, 

3/ 2, , 1/ 2, ,ˆ ˆj k j kn n , since the lines 3/ 2i =  and 1/ 2i =  are virtually parallel. Therefore, the density gradient at 
the surface can be extrapolated as follows, 
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and rearranged, 
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Strictly speaking, the second derivative of density with respect to the surface normal does not vanish 
exactly at the surface, but rather at the cell center just above the surface according to Equation (4.31). Since 
our initial intent was a mere gradient extrapolation, this should come as no surprise. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-4: Surface Velocity 
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Equation (4.29) and (4.32) take care of the two thermodynamic state variables needed to fill the ghost cells. 
We still have to address the velocity vector at the surface to cover the remaining three surface boundary 
conditions. For a non-rotating surface, the no-slip condition simply dictates that the velocity at the surface 
vanishes, 0surv = . For a rotating surface, however, there is a non-zero tangential velocity component, 
which depends on rotation rate Ω  and radius vector r . For counter-clockwise rotation around the y-axis, 
as shown in Figure 4-4, the surface velocity is simply the cross product of rotation and radius vector, 
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 (4.33) 

 
The vector r  does not describe a radius in the true sense, unless we have a rotating sphere. Due to the lack 
of a better term, and because of the similarity between the spherical and the ellipsoidal coordinate system, 
the expression “radius vector” was yet adopted here. Although not immediately apparent, the tangency of 
the surface velocity is guaranteed, because the radius vector r , the rotation vector Ω , and the local surface 
normal n̂  always lie in the same plane. Therefore, 

 
 ( ) ( )ˆ ˆ ˆ 0surn v n r n r⋅ = ⋅ × Ω = × ⋅Ω =  (4.34) 

 
Numerically, the no-slip condition is implemented such that the arithmetic average of the ghost cell 
velocity below the surface and the adjacent flow cell velocity above is equal to the surface velocity 
prescribed by Equation (4.33). Solving for the ghost cell velocity, 

 
 0, , 1, ,2j k sur j kv v v= −  (4.35) 

 
The arithmetic average embedded in Equation (4.35) only yields the exact rotational velocity at the surface, 
if each ghost cell has the same volume as its adjacent flow cell. Therefore, 

 
 0, , 1, ,j k j kV V∆ = ∆  (4.36) 

 
is an auxiliary requirement to the no-slip condition prescribed by Equation (4.35). Combined with 
Equations (4.29) and (4.32), we now have five boundary conditions—for five unknowns—and the physical 
set is complete. Computationally, however, we are not quite done! Recall that the flux vector F  requires 
values for the heat flux vector and viscous stress tensor at cell centers, which are centrally differenced with 
respect to all six faces. A ghost cell, however, has only one neighbor, which means the central difference 
formula of Equation (4.16) clearly would not apply. The heat flux vector can be mirrored with respect to 
the surface, because its arithmetic average vanishes by the volume condition of Equation (4.36), 

 
 0, , 1, ,j k j kq q= −  (4.37) 

 
Simply mapping the components of the viscous stress tensor from flow cell to ghost cell would be 
incorrect, since the state of viscous stress near the surface is a strong function of normal distance. 
Therefore, it was decided to extrapolate the viscous stress tensor components based on their gradients just 
above the surface. Similar to Equation (4.32), the following formula was employed, 
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Again, it should be emphasized that Equations (4.37) and (4.38) are computational requirements rather than 
physical boundary conditions. The viscous stress and heat flux at the surface are already determined 
through Equations (4.29) and (4.35), and adding two more equations is somewhat an over-specification to 
the physical problem. Nonetheless, Equations (4.37) and (4.38) are essential to the solution algorithm, and 
it seemed appropriate to present them within the context of boundary conditions. 
 
It is remarkable that many textbooks on CFD do not discuss the possibility of a pressure or density gradient 
near the surface, except for some of the most recent sources [3, 11]. The classical texts only mention the 
reflection boundary condition for inviscid flow, but simply omit a proper boundary treatment when 
presenting the FNS equations [1]. Therefore it seems, as if the standard practice in CFD is to use the 
reflection boundary condition whenever an adiabatic surface is present, which indirectly enforces a zero 
gradient for both density and pressure. It has been the author’s experience that neglecting the surface 
density gradient when solving inviscid flow only has a minimal effect, whereas for a viscous flow solution, 
the point of boundary layer separation can be delayed by as much as 20% chord when using the above 
extrapolation scheme. Apparently, a compressible viscous boundary layer is very susceptible to even the 
slightest density gradients near the surface, and therefore such gradients should not be neglected. 
 
 
 
4.5.1.2  Outer Boundary 
 

Since the flow at the outer boundary is assumed to be undisturbed, we must accordingly enforce the 
conditions of free stream flow there, which are specified by two thermodynamic state variables, typically 
pressure and temperature, as well as a wind direction and wind speed. Denoting free stream values with the 
infinity symbol, we can construct the following flow vector of conserved properties, 
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Thus Q∞  is completely specified by free stream pressure and temperature, p∞  and T∞ , as well as flow 
Mach number and angle of attack, M  and α . Although a general wind direction can include a cross wind 
component, specified by a possible cross wind angle β , such a generalization is not necessary, because the 
flow over any body of revolution can always be reduced to a single angle with respect to its axis. The same 
is true when the body is rotating around its axis, which can be visualized by shifting the wind vector in 
space until both the axis of rotation and the wind vector fall within the same plane. 
 
Another condition that must be met at the outer boundary is the vanishing of any gradients, which is 
generally guaranteed as long as the outer boundary is at a far enough distance. Although pressure and 
density gradients are supposed to fade away naturally, the vanishing of temperature and velocity gradients 
can be enforced by setting the components of viscous stress tensor and heat flux vector equal to zero, 

 

 0 ,         0q τ∞ ∞= =  (4.40) 
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The numerical implementation of Equations (4.39) and (4.40) is straightforward. Similar to the surface 
boundary, ghost cells are attached just outside the physical domain and are set to free stream conditions, 

 

 
max max max1, , 1, , 1, , ,         0 ,         0I j k I j k I j kQ Q q τ+ ∞ + += = =  (4.41) 

 
Each ghost cell is assigned the same volume as its adjacent flow cell, mainly to ensure that fluxes leaving 
and entering the outer boundary are properly computed, since gradients are supposed to vanish anyway, 

 
 

max max1, , , ,I j k I j kV V+∆ = ∆  (4.42) 
 

It can be argued that the downstream portion of the outer boundary is too close to the disc, being only four 
disc diameters away from its center, and enforcing Equations (4.39) and (4.40) limits the proper 
development of a wake. After all, a wake generally extends over hundreds of (disc) diameters before it 
completely dissipates. However, since the flow over the disc is computed in the compressible range 
( 0.5M = ), much more information is propagated downstream than upstream, and thus the influence of the 
downstream boundary on the upstream flow field is weak. Nonetheless, a loss in accuracy does occur by 
cutting the wake short, which shall be tolerated here. 
 
 
 
4.5.2  Initial Condition 
 

The initial flow condition is somewhat arbitrary, since a steady state or asymptotic solution of a subsonic 
flow field depends solely on boundary conditions. For faster convergence, one may want to use an 
approximate solution as a starting point, if such a solution exists. For example, the flow over the spinning 
disc was computed from the converged solution of the non-spinning case. However, time savings are not 
always guaranteed when starting with an existing solution. Such is the case for separated flow that wants to 
reattach after a change in parameters has been made. The author’s experience has been that the simulation 
time required for a boundary layer reattachment and subsequent convergence is roughly the same as it is for 
starting the flow impulsively from rest. An impulsive start is numerically equivalent to initializing all flow 
cells with the free stream flow vector of conserved properties, which was defined in Equation (4.39), 

 
 0

, ,i j kQ Q∞=  (4.43) 
 

When accelerating an aerodynamic body impulsively, the initial velocity gradients normal to the surface are 
infinitely steep. The boundary layer grows over time as the surrounding flow field develops, which all 
happens within fractions of a second for any subsonic flow in air. Although this may seem a small time 
frame for an observer, it is fairly long compared to the time it takes for acoustic waves to set up within the 
flow. The development of a boundary layer is a viscous process governed by the time scale of molecular 
diffusion, which is generally very large compared to the time it takes for sound waves to travel the same 
distance. For example, imagine one is working in a lab that contains a small balloon filled with a highly 
poisonous gas. Accidentally, the balloon pops, a sound that can be heard “immediately” throughout the lab. 
The time it takes for the gas to diffuse and reach lethal levels is yet long enough for anyone to get out of the 
lab—unless the diffusion process is aided by ceiling fans. 
 
As a general rule, one could say that the development, or adjustment, of a boundary layer always takes its 
time, regardless of the initial condition present. Therefore, one might as well start “fresh” with every new 
computation and initialize the flow field according to free stream conditions. 
 
 



 67 

4.5.3  Boundary Layer Resolution 
 

The boundary layer is the thin layer of fluid flow surrounding an aerodynamic body in which viscous forces 
are significant. It is characterized by strong velocity gradients, as fluid particles accelerate from a zero 
velocity on the surface to the velocity of the nearby flow. A boundary layer originates at the forward 
stagnation point and grows in thickness up to the point of separation, where the local direction of flow 
reverses itself. For a slender body at small angles of attack, the boundary layer thickness δ  is a function of 
flow Reynolds number and downstream location along the surface. Experimental and numerical data 
suggest [17] that the boundary layer thickness along a slender aerodynamic shape grows about an order of 
magnitude between the leading and trailing edges. For a non-rotating disc of diameter D, the following 
“rule of thumb” applies, 

 

 1/ 2 1/ 2(near leading edge)        0.5 5         (near trailing edge)Re Re
D
δ− −< <  (4.44) 

 
Thus for a Reynolds number of 30,000 based on diameter, the non-dimensional boundary layer thickness 
near the leading edge is approximately 3/1000, which is quite small. The spatial discretization was carried 
out such that the average cell spacing normal to the surface is roughly one-third of that scale, 
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In other words, the boundary layer near the leading edge is captured within three cells only, and is therefore 
considered minimally resolved. A higher resolution would require further subdivision of the cells near the 
surface, which would directly affect the integration time step and ultimately increase the overall 
computation time. 
 
 
 
4.5.4  Integration Time Step 
 

An important aspect of the discretization, which has not been addressed yet, is how to choose a proper 
integration time step t∆ . A time step too large will result in failure of the computation as the numbers 
become unstable and eventually “blow up”, whereas an integration time step well below the stable limit 
will result in extra iterations, an unnecessary computational expense. For an explicit time marching scheme, 
such as the one presented in Equation (4.20), the limit for numerical stability is dictated by the well-known 
CFL condition, after a 1928 paper published by Courant, Friedrichs and Lewy [4], 
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The CFL condition is based on the physical principle that flow disturbances can travel no faster than the 
local speed of sound and flow speed combined, and thus information should advance by no more than one 
cell spacing in a single time step. Since all these parameters vary throughout the discretized flow field, the 
global stability of the computation is limited by the smallest time step based on local conditions. One can 
devise a conservative estimate for a global integration time step as follows: From the spatial discretization, 
we know that the cell spacing right at the surface is closest, in order to capture the boundary layer. Since 
temperature variations are small in subsonic flow—for M = 0.5 the stagnation temperature is only 5% 
above the free stream static temperature—the speed of sound is nearly constant throughout the flow. From 
experience, one could say that the local flow speed is generally no greater than twice the wind speed. 
Therefore, a conservative global integration time step, expressed in terms of flow Mach number, the free 
stream speed of sound, and the smallest cell spacing found anywhere along the surface, would be, 
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For a compressible viscous flow of moderate Reynolds number, the integration time step has to be very 
small to assure stability. Generally, thousands of iteration time steps are needed before an impulsively 
accelerated flow converges to its steady or asymptotic state. It should be mentioned that the computation of 
aerodynamic flow at low Reynolds numbers (Re < 100) is even more restricted. High altitude flight falls 
into this regime. When the ambient air density is very low, molecular diffusion and acoustic waves 
propagate signals at comparable speeds, since intermolecular collision is rare. 
 
 
 
4.6  Aerodynamic Coefficients 
 

Once the flow field is computed, the prime quantities of interest are the aerodynamic forces and moments 
acting on the disc, which are obtained by integrating the stress tensor over the entire surface, 
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where, 

1/ 2, , 1/ 2, , 1/ 2, ,ˆj k j k j kf nσ= ⋅  

 
Both F  and M  are calculated with respect to the Cartesian reference frame ( , , )x y z , which we shall refer 
to as the body axes, since they are attached to the center of the disc. Generally, the components of the force 
vector are expressed with respect to a rotated reference frame ( , , )I J K , which we shall call the wind axes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-5: Net Force and Moments 
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The wind axes are rotated as shown in Figure 4-5 such that one axis is aligned with the wind direction. The 
force components with respect to the rotated reference frame are obtained through the following 
transformation of coordinates, 
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One can think of Equation (4.49) as a special case of the more general coordinate transformation described 
in Section 4.3. A general transformation changes both direction and length scale, whereas a rotation only 
changes direction but preserves length scale. In Equation (4.49), the gradient vectors I∇ , J∇ , and K∇  all 
have unit length and are mutually orthogonal, and therefore they can be viewed as face vectors to a unit 
cube, centered at the origin, that was rotated through an angle α  around the z-axis. 
 
Although the components of the net moment vector M  could also be transformed according to Equation 
(4.49), it was decided to leave them in body coordinates for better visualization. The following 
nomenclature for aerodynamic forces and moments shall be adopted here: 
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 (4.50) 

 
Notice that the left force—which steers the disc to the left, thus the name—is the same with respect to wind 
and body axes, K zF F= , because the K-axis and z-axis coincide. By definition, the drag is always measured 
along the wind direction and the lift being normal to it, which is why the wind axes were introduced. 
 
It is common practice in engineering to present data in non-dimensional form. Aerodynamic forces and 
moments are turned into coefficients by dividing them by reference quantities that can easily be measured. 
The product of free stream dynamic pressure, 

 
 ( ) 21 1

2 2q v v p Mρ γ∞ ∞ ∞ ∞ ∞= ⋅ =  (4.51) 
 

and planform area, 

 2

4refA Dπ=  (4.52) 

 
yields a reference force. A reference moment is obtained by multiplying this force by the disc diameter D. 
For example, the lift and pitching moment coefficients for a disc are defined as follows, 
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= =  (4.53) 
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Also of interest are the coefficients of local surface pressure, 
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P
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∞

∞

−
=  (4.54) 

 
and local traction vector, including its magnitude, 

 

 ( )1/ 2
1/ 2, ,  ,          t j k t t t

Rec t c c c
q∞

= = ⋅  (4.55) 

where, 

1/ 2, , 1/ 2, , 1/ 2, ,ˆj k j k j kt nτ= ⋅  

 
The viscous stress is generally orders of magnitude smaller than the pressure, which is why the square root 
of the Reynolds number is used as a scaling factor. The local traction is similar to the more commonly used 
skin friction coefficient when presenting viscous forces along a surface. Skin friction is based on shear 
stress, which is usually measured tangential to a surface. Viscous stress, on the other hand, does not always 
act tangentially unless the flow is nearly steady, or incompressible. For example, when the disc was 
impulsively accelerated, the local traction vector pointed normal to the surface in the neighborhood of 
stagnating fluid. This effect can be attributed to compressibility, and as the flow field reached equilibrium 
the component of viscous stress normal to any surface was absorbed by local pressure. For that matter, it 
was decided to also monitor the coefficient of normal traction, as an indication of local equilibrium, 

 
 1/ 2, ,ˆt n t j kc c n− = ⋅  (4.56) 
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5.  RESULTS 
 
The full Navier Stokes (FNS) flow solver was first developed for 2-D flow and tested on a number of cases 
such as the flow over a cylinder and the flow over an elliptical airfoil at zero and non-zero angle of attack. 
At a Mach number of 0.5 and Reynolds number of 30,000, a 3-D flow computation over a sphere or 
ellipsoidal disc took nearly two weeks on a 1GHz Pentium PC, whereas a similar 2-D flow computation 
generally converged in less than six hours, a more reasonable time frame. The primary purpose of 
developing a 2-D flow solver was to evaluate the different inviscid algorithms, ROE, TVD, and ULT, 
which form the core of the FNS code. 
 
When computing subsonic viscous flow on a curvilinear mesh, the artificial compression of the ULT 
algorithm turned out an undesirable feature, which only enhanced the reflection of transient waves at the far 
field boundary and as a result slowed down convergence. Undoubtedly, the ULT algorithm would be highly 
suitable for supersonic flow computations, where far field wave reflection is not an issue. For fully 
subsonic flow, employing the ULT algorithm within a FNS flow solver was therefore ruled out. 
 
The TVD algorithm, although second-order accurate, did not always yield physically valid results when 
computing without entropy enforcement (ε = 0). For example, using the TVD scheme to solve the 2-D 
viscous flow over a cylinder produced a large recirculation region in the wake, the size of several 
diameters, with a reversed flow speed that was nearly equal to the wind speed. Upon adding a small amount 
of numerical viscosity (ε = 0.005) to the entropy function, the flow field corrected itself to a physically 
reasonable solution, but at the same time the wake lost most of its structure, and the entire flow field 
appeared “washed out”. 
 
In comparison, the original ROE scheme without the entropy fix (ε = 0) seemed the best algorithm for 
solving subsonic flow. Although viscous solutions based on the ROE scheme are only first-order accurate, 
for the cases being tested, they were always physically valid and at the same time appeared reasonably 
resolved. The 2-D flow over a cylinder (M = 0.5; Re = 10,000) was computed based on Roe’s scheme and 
appears in very good agreement with experimental data obtained by Anatol Roshko [16]. Roshko used a 
splitter plate in the wake of his cylinder, which is the only way to obtain a steady symmetric flow field in 
the laminar regime with two stable vortices. Unlike a numerical wind tunnel, a physical wind tunnel is 
never 100% turbulence free, which creates vortex instability and causes the periodic vortex shedding in the 
wake of a cylinder that is generally observed in experiments. 
 
Since the ROE scheme is an upwind scheme, transient wave reflection at the far field boundary was a 
minor issue, which enhanced the convergence of the computation. In addition, the ROE scheme is also the 
computationally least expensive of the three algorithms, which yielded an additional time saving. For all 
the above reasons, it was therefore decided to exclusively use the ROE scheme—as part of the FNS 
solver—for computing the 3-D viscous flow over the ellipsoidal disc. 
 
In all computations, the size of the disc as well as the ambient conditions and wind speed were chosen such 
that the resulting flow Mach number and flow Reynolds number would match M = 0.5 and Re = 30,000. 
The angle of attack was held fixed at 5 degrees, while the spin ratio was varied between 0, 0.5, 1, and 1.5. 
In the subsequent discussion, the following terms shall be used to distinguish between different solutions 
based on varying spin ratio: non-rotational (SR = 0), sub-rotational (SR = 0.5), equi-rotational (SR = 1), 
and super-rotational (SR = 1.5). Aerodynamic data such as force and moment coefficients were compiled 
for all four cases, which are tabulated in Section 5.4. Due to space limitations, however, only the non-
rotational and equi-rotational case is presented in form of contour-, vector-, and surface plots. The majority 
of these plots are full-page color graphs, and in view of their large number—about thirty for each case—
they are listed in separate Appendices, A and B. Reference will be made by page numbers. 
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5.1  Flow Field 
 

The flow field is plotted in terms of Mach number, pressure, and density for the three mutually 
perpendicular coordinate planes: side view (x-y plane), front view (y-z plane), and top view (x-z plane). 
Collectively, we shall refer to them as contour plots, because their coloring indirectly reveals the contours, 
i.e. lines, of constant Mach number, pressure, and density within each plane of view. Pressure and density 
were non-dimensionalized by their free-stream values. Other thermodynamic properties, such as 
temperature and entropy were also available from the plot menu, however, these graphs were not as 
colorful at ordinary magnification (Zoom = 3), because their range of values was mainly confined to the 
thin boundary layer. Therefore, these plots were not included. In order to show the computational mesh in 
each plot, the flow cells were not filled with solid color, but were simply crossed out. 
 
We shall first discuss the non-rotational case. The contour plots of Mach number, pressure, and density all 
show symmetry with respect to the x-y plane, which is expected due to symmetric boundary conditions. 
Asymmetry, introduced by the non-zero angle of attack, can only be seen within the side views (85-93). 
 
Recall that in subsonic flow temperature variations are small, and thus the speed of sound is nearly uniform 
throughout the flow field. Accordingly, the Mach number plots directly display the speed of the local flow. 
In all three views one can identify the thin boundary layer surrounding the disc, in which fluid particles 
decelerate to zero as they approach the surface. Outside the boundary layer the flow behaves as if it were 
inviscid. Just below the forward rim, the flow comes to a complete rest as it impinges normal to the surface, 
which is known as the forward stagnation point. As the flow moves over and around the disc, it accelerates 
due to the fact that it is displaced. Once the flow reaches the rearward rim, it again decelerates and comes 
to rest at the rearward stagnation point. There is considerably more stagnant fluid at the rear compared to 
the front because of the wake of the disc, which is a result of boundary layer separation, a phenomenon 
that will be explained in the next section. 
 
As the flow decelerates, the local static pressure increases; and as it accelerates, static pressure drops again, 
an observation that can be made when comparing Mach number and pressure plots. Due to the non-zero 
angle of attack, the flow over the top is slightly faster than over the bottom, and as a result we have a small 
pressure differential which creates aerodynamic lift. Near the rearward stagnation point, the flow 
decelerates again, however, the pressure rise is not as dramatic compared to the forward stagnation point. 
This lack of pressure recovery can directly be attributed to the frictional losses within the boundary layer. 
The gradual drop in stagnation pressure as well as the frictional forces along the surface is what creates 
aerodynamic drag. 
 
Density behaves similar to pressure. The density rises as the flow reaches the forward stagnation point, 
where the air is being compressed. As the air accelerates over the top and bottom, it expands, and the local 
density decreases. An additional expansion of air can be seen close to the surface, which is due to frictional 
heating within the boundary layer. The lowest density can be found right around the rearward rim, where 
frictional losses are greatest. As can be seen in the graphs, the rearward stagnation point does not see any 
density rise, unlike the pressure recovery, and the lower than ambient density extends far into the wake. 
 
Having discussed the non-rotational case, we shall now review the contour plots of the equi-rotational case 
for comparison (115-123). The most obvious change can be seen in the top view of the Mach number plot. 
The stagnant fluid around the rearward rim has separated from the surface and is now dragging behind the 
disc similar to the tail of a comet. Due to the disc’s rotation, the rearward stagnation “bubble” can no longer 
be found on the surface, and when comparing all three Mach number views, one can visualize an entire 
sheet of zero-velocity fluid that is loosely wrapped around the right rear quarter of the disc. The velocity 
vector plots for the boundary layer, discussed in the next section, will shed further light on this 
phenomenon. 
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The pressure contour plots only display a minimal change compared to the non-rotational case. The side 
views for both flow scenarios are almost identical except for an enhanced pressure recovery at the rearward 
rim for the rotating disc. The top view shows a slight opposite rotation of the pressure field at the right and 
rear rim, with an improved pressure recovery. Both side view and top view indicate a bubble of elevated 
pressure in the immediate wake that has detached itself from the rear surface. The pressure distribution 
along the front rim appears to be unaffected by the rotation. The front view for the rotational case reveals a 
weak shift in the pressure pattern towards the left (with respect to the body axes). It is this minor shift in the 
pressure field which gives the disc a small left steering force. A shift in pressure due to rotation is known as 
the Magnus effect [14]. 
 
When comparing the density contour plots, the first thing one will notice is a shift in the color spectrum, 
which is due to a minor change in density range. Although the upper density limit is virtually unaffected, 
the lower limit for the equi-rotational case has jumped up almost 5% compared to the density field of the 
non-spinning disc. This change can be attributed to the increased frictional heating that takes place in the 
boundary layer over the advancing surface of the disc. The top view and side view clearly demonstrate this 
effect. The side view of the rotational density field lacks the density drop around the rearward rim, which 
can be explained by the suppressed boundary layer separation, as we shall find out later. 
 
 
 
5.2  Boundary Layer 
 

The boundary layer has been completely mapped throughout the three orthogonal coordinate planes in form 
of vector plots (94). Strictly speaking, we are only looking at the 2-D components of the local velocity 
vector within each plane. Since the direction of the vectors can generally be identified from the context, 
arrow-heads were omitted to avoid clutter. The color of the 2-D vectors specifies the local flow Mach 
number and directly indicates the magnitude of the respective 3-D velocity vector. A common 
magnification factor was used in all plots (Zoom = 25) such that a direct comparison can be made between 
different views. The coordinates given at the lower right-hand corner of each graph (X-view & Y-view) are 
with respect to the page and do not reflect the body axes. Setting both page coordinates to zero always 
centers the view. Navigating within each plane based on page coordinates turned out more intuitive than 
using body axes, which do not always point to the right and up depending on the view selected. All page 
coordinates are scaled with respect to the disc’s diameter. 
 
Again, we shall address the non-rotational case first. The side view vector plots (94-97) clearly show the 
boundary layer growth along the top and bottom surface, starting at the forward stagnation point just below 
the rim. As the boundary layer grows in thickness, it loses momentum, and due to the adverse pressure 
gradient, which sets in about midsection, the flow near the surface eventually stops and reverses itself, 
which is referred to as boundary layer-, or flow separation. On the upper surface, this occurs at about 70% 
of the centerline chord. (Chord is the streamwise length of an aerodynamic surface and is measured from 
the leading edge; for a disc, the centerline chord length is equal to its diameter). Along the lower surface, 
the adverse pressure gradient is less severe, and the flow along the centerline does not separate until about 
90% chord. Past the point of separation, the local flow near the surface recirculates, which can be observed 
in the rearward section of the side view plot. The separated boundary layers from the top and bottom 
surface form the wake of the disc. 
 
The top view vector plots (98-103) cover the boundary layer profile from forward to rearward stagnation 
point for the left half of the disc. Since the flow field is symmetric with respect to the x-y plane, the right 
half was omitted. Along the front rim, the boundary layer grows slowly because the pressure gradient is 
favorable. Once the flow passes the lateral axis, the pressure gradient becomes adverse, and the boundary 
layer grows quickly. Separation at the rim starts at about 50 degrees measured from the rear centerline. 
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Recirculation within the top view plane is minimal near the rim, yet clearly visible in the wake portion. The 
flow around the rearward rim is highly three-dimensional and difficult to capture in any projected view. 
The front view (104-105) confirms this notion and demonstrates that there is an upward flow component 
that curls around the rim of the disc due to the non-zero angle of attack. Towards the vertical axis, the front 
view shows a diminishing lateral flow. The red dots represent flow vectors of large magnitude that point 
into the plane of view, along the downstream direction. 
 
Keeping the above boundary layer discussion in mind, we shall now examine the vector plots for the equi-
rotational case, first inspecting the side view plane (124-127). At a first glance, the boundary layer profile 
around the forward rim looks identical in shape compared to the non-rotational case, with one minor 
difference: the colors near the surface do not show the familiar red-blue shift. Although the 2-D vectors 
diminish in length the closer they get to the surface, their color indicates that the actual 3-D velocity vector 
increases in magnitude. This seems contradictory, yet it does make perfect sense. Very close to the surface, 
fluid particles move according to the disc’s rotation, and the further one moves towards the front rim, the 
larger becomes the vector component that points out of the side view plane. The same is true for the 
velocity near the rearward rim, as seen in the same color reversal, although the third velocity component 
now points into the page. Near the axis of rotation, the angular velocity component is small and the 
boundary layer profiles look virtually identical, in shape and color, when comparing the side views of both 
cases. The most striking difference of the equi-rotational case is the absence of flow reversal along the 
upper rear surface. Apparently, the centrifugal force imparted on the fluid near the surface has delayed 
boundary layer separation all the way to the rearward rim judging from the graph, or may have even 
eliminated separation entirely depending on the magnitude of the circumferential traction component. 
 
To further demonstrate the centrifugal force effect, we shall now turn to the front view vector plots (140-
143). Outside the boundary layer, there is an upward flow around each rim similar to the non-rotating case. 
Along the upper surface though, one will notice a radially outward flow induced by rotation, which opposes 
the inward flow further above. This effect is slightly more enhanced on the receding side, and judging from 
the biased boundary layer profile near the axis of rotation, one could say that there is a net flow from the 
advancing to the receding rim. The radial boundary layer profiles of upper and lower surface meet 
somewhere close to the rim, which may result in flow separation if the streamwise surface traction is weak. 
Such is definitely the case along the receding side, and as we shall find out in the next section, a line of 
separation can be located near the left rim. 
 
The top view vector plots are by far the most interesting, and because of the completely asymmetric flow 
field of the equi-rotational case, the boundary layer was mapped along the entire circumference (128-139). 
Starting at the forward rim, one will immediately notice the very steep velocity gradient, as the flow wants 
to impinge normal to the surface but is redirected tangentially. Traveling around the rim counterclockwise, 
i.e. with the rotation, this gradient slowly diminishes as the local surface tangential aligns itself with the 
wind. After a quarter turn, the boundary layer has completely disappeared, since the relative wind seen by 
the left rim is zero. Along the leeward side of the receding rim the velocity gradient redevelops, yet the 
boundary layer profile is much wider compared to the windward side, which is to be expected. Although 
the flow field is highly three-dimensional within the wake, one can clearly identify the large circulation 
region behind the disc, as the rim rotates through the centerline. This circulation field tightens as the 
leeward side advances into the wind, and at the right rim the reversal of boundary layer flow follows a 
nearly parabolic profile. The advancing rim sees exactly twice the wind speed at the three-quarter turn, 
which explains the strong frictional effects felt in this region. As the rim completes the 360-degree turn, the 
boundary layer profile quickly steepens to the point where it essentially becomes under-resolved. The 
velocity vector just above the surface already shows a significant normal component, a somewhat 
undesirable feature, which gives the graph a “pick-a-stick” appearance. Frictional forces reach a maximum 
at a circumferential angle of about 315 degrees, which is revealed by a surface traction plot presented in the 
next section (Figure 5-3). 



 75 

5.3  Surface Forces 
 

There are two kinds of surface forces. One is due to the thermodynamic pressure and always acts normal to 
the local surface. The other force is due to the viscous stress tensor and generally acts tangential to the 
surface, unless the flow goes through unsteady compression. The complete surface force field has been 
plotted in a three-dimensional view of the disc, using both color and tufts. The color specifies the local 
pressure, whereas the tufts indicate the direction of the local traction. Although the traction magnitude was 
originally communicated through the length of the tufts, it turned out more practical to make them all the 
same length for better visualization. Regions of boundary layer separation were difficult to determine, 
because the scaled tufts often reduced to a mere dot on the surface due to the large overall range in traction 
magnitude. Similar to tufts placed on an actual wind tunnel model, they also indicate the direction of the 
relative wind just above the surface. 
 
Again, we shall start with the 3-D surface plots of the non-spinning disc, for which six rotated views are 
provided (106-111). The orientation of the disc is indicated by a set of translated body axes at the lower left 
corner of each graph. The colors red, green, and blue correspond to the x-, y-, and z-axis, respectively. In 
almost every view, the orientation of the disc can be identified by the red colored rim, which marks the 
forward stagnation point. It turns out that most of the disc is painted in three colors, which implies that the 
only major pressure changes occur along the forward rim, where the flow stagnates. The tufts show exactly 
how the air parts at the front rim and evenly flows over the forward half of the disc with a slight upward 
curl around the side rims. Once past the lateral plane, the air seems to slightly steer away from the disc’s 
centerline resulting in a fork of two separation lines at about 70% center chord. The two lines of boundary 
layer separation veer symmetrically outward over the remainder of the upper surface, somewhat resembling 
an unzipped neck collar. A similar separation pattern can be found on the lower surface, although the lines 
of separation are much closer to the aft rim, and the area of reversed flow is significantly smaller compared 
to the top surface. 
 
The 3-D surface plots for the equi-rotational case (144-151) reveal a much different picture, which should 
not be too surprising after having studied the earlier vector plots in great detail. The disc’s rotation has 
dramatically altered the surface traction, and the tufts along the upper and lower rear surface verify 
previous indications that the flow remains attached over the entire aft portion of the disc, even along the 
rearward rim! Apparently, the centrifugal force felt within the boundary layer has prevented the flow from 
separating, and along the aft rim, the circumferential traction component kept the boundary layer attached 
despite the adverse pressure gradient. The only line of separating flow that can be found on the entire disc 
is wrapped around the left receding rim. Indicated by the presence of crossing tufts, the line of separation 
extends from about 70 degrees above the rim to about 120 degrees below, the angle being measured 
circumferentially with respect to the “dateline”. The forward impingement point, which was originally 
located just below the centerline, has moved about 55 degrees counterclockwise, i.e. with the rotation, and 
can be identified by the outward pointing tufts just below the rim. Although the tufts show the direction of 
the local surface traction, they do not reveal their relative magnitude. For that matter, the traction 
magnitude has been plotted for selected circumferential cross sections, which are presented in Figures 5-2 
and 5-3. Also included is a 2-D traction plot along the centerline of the non-spinning disc for comparison. 
 
Despite the drastic alteration in traction, the change in surface pressure due to rotation is less severe. The 
windward pressure region has remained in place, despite the movement of the impingement point itself. 
Next to the Magnus effect, the only major difference between the two cases can be seen along the upper 
surface, where the region of lowest pressure has spread just past the lateral plane, by about 10% chord near 
the centerline. Overall, the disc’s rotation had a minor effect on the surface pressure distribution, which is 
mainly governed by the inviscid flow field. To better illustrate the subtle changes in surface pressure 
induced by rotation, the pressure coefficient along the longitudinal cross section has been plotted for both 
cases and is compared in Figure 5-1. 
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Figure 5-1: Longitudinal Pressure Comparison 
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Figure 5-2: Longitudinal Traction Comparison 
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Figure 5-3: Traction in Lateral and Oblique Plane 
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The traction plots show slight jumps across the polar axis ( '/ 0.5x D = ), particularly the non-rotational case, 
which can be attributed to the mathematical modeling. Recall that cells on opposite sides of the pole are 
only connected circumferentially, and what may appear as a jump is actually a smooth variation. Although 
one may be inclined to employ an averaging technique of some sort, such practice would not be consistent 
with first principles. 
 
 
 
5.4  Aerodynamic Data 
 

As mentioned earlier, aerodynamic data were compiled for all four cases of varying spin ratio, which are 
tabulated below. Recall that the coefficients of lift and drag are computed with respect to the wind axes, 
whereas other force and moment coefficients are relative to the body axes (x, y, z). All recorded moment 
coefficients turn out negative, which implies right roll, pitch up, and clockwise yaw according to the sign 
convention established in Figure 4-5. Needless to say, gyroscopic effects have to be taken into 
consideration whenever the disc is spinning, in order to predict which way it will turn. 
 
As expected, the yawing moment opposes rotation, and it appears that the functional relationship between 
yawing moment and rotation rate closely resembles a cubic polynomial. The pitching moment is virtually 
unaffected by rotation, and is the only moment acting when the disc is not spinning. The rolling moment is 
very small in comparison to both pitching and yawing moment, yet shows an increase with rotation rate. An 
exact aerodynamic center can only be calculated for the non-rotational case and is located along the 
negative x-axis, around 16.6% center chord, 
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For the spinning disc, the flow field is completely asymmetric, and the resulting forces and moments can no 
longer be represented by a single force acting away from the center of gravity. 

 
 

SR 0.000 0.500 1.000 1.500 
     

CAft 0.04352 0.04483 0.04866 0.05734 
CUp 0.11878 0.12140 0.11547 0.10126 
CLeft 0.00000 0.00313 0.00371 0.00215 

     
CRoll 0.00000 -0.00038 -0.00068 -0.00126 
CYaw 0.00000 -0.00330 -0.00792 -0.01505 
CPitch -0.03964 -0.03887 -0.03916 -0.04066 

     
CDrag 0.05370 0.05524 0.05854 0.06595 
CLift 0.11454 0.11703 0.11079 0.09588 
CLeft 0.00000 0.00313 0.00371 0.00215 

     
L/D 2.133 2.119 1.893 1.454 
γ 25.1° 25.3° 27.8° 34.5° 

 
Table 5-1: Aerodynamic Data 
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The data suggest a slow increase of drag with rotation rate. The lift shows a small peak in the sub-rotational 
range followed by a drop-off as rotation is further increased. The lift-to-drag ratio displays a shallow 
parabolic decline, and the corresponding glide angle γ —defined in Equation (1.3)—steepens accordingly. 
The left steering force seems to peak at equi-rotational spin, although one might have expected a steady 
increase with rotation rate based on experience with rotating cylinders. 
 
 
 
5.5  Conclusion 
 

In contrast to the major change in boundary layer and immediate flow field surrounding a spinning disc, the 
overall aerodynamics were minimally affected, if one excludes the gyroscopic stability benefit of rotation. 
The aerodynamic center, although not precisely defined for a rotating disc, did not move significantly in 
view of the minimal change in pitching moment and upward force, compared to the non-rotational case. 
The subtle increase in lift in the sub-rotational range was accompanied by an equally small increase in drag, 
such that the lift-to-drag ratio, and consequently the glide angle, remained more or less unchanged. 
 
Judging from the aerodynamic data collected, the ellipsoid would make an unlikely candidate for a sports 
disc of any kind. The relatively large pitching moment, combined with gyroscopic precession, would result 
in considerable banking and quickly turn the disc upside down. Next to the problem of stability, the low 
lift-to-drag ratio of the ellipsoid would only yield a mediocre flight range. 
 
Despite its undesirable aerodynamics, the ellipsoid was perfectly suited for a numerical flow simulation. 
Compared to a Frisbee, the shape of an ellipsoid is much more streamlined, and thus turbulence played a 
lesser role in the analysis. The extra computational expense of turbulence modeling was not an option in 
light of the extensive run time of a single simulation. 
 
Although the numerical simulations were limited to a single shape and only one variation in flight 
parameters, the overall CFD analysis was able to unveil most of the “big picture” in disc aerodynamics. 
The influence of rotation on boundary layer growth and flow separation was anything but expected, and 
trying to obtain the same level of documentation in an actual wind tunnel test would be next to impossible. 
Although the number of graphs generated from the computational data may have been overwhelming, 
collectively they mapped out the flow field and thus told the “complete story”. 
 
The major findings of this research can be summarized as follows: For an ellipsoidal disc at a small angle 
of attack, the onset of rotation accelerated fluid particles within the boundary layer radially outward. 
Combined with the rotational traction near the aft rim, flow separation could be eliminated along the entire 
rear surface. The only line of separation that was observed on the equi-rotational ellipsoid was curled 
around the left receding rim, where the relative wind vanishes and the surface traction is minimal. The 
forward impingement point, which is equivalent to the forward stagnation point for a non-rotating disc, was 
displaced circumferentially in the direction of the spin. The influence of rotation on the surrounding 
pressure field was weak, and the overall aerodynamic forces acting on the ellipsoid only experienced minor 
changes, such as the addition of a small left-steering force. 
 
Being limited by computational resources, this work can only be considered a small first step towards the 
better understanding of disc aerodynamics. Future research on this topic should include the testing of 
different aerodynamic shapes, under a larger set of flight parameters. It should also address the turbulent 
aspect of the flow, which may have considerable impact on the overall aerodynamic behavior. 
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